
ONYX: Assisting Users in Teaching Natural Language Interfaces
Through

Multi-Modal Interactive Task Learning
Marcel Ruoff

marcel.ruoff@kit.edu
Karlsruhe Institute of Technology

Karlsruhe, Germany

Brad A. Myers
bam@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, USA

Alexander Maedche
alexander.maedche@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

ABSTRACT
Users are increasingly empowered to personalize natural language
interfaces (NLIs) by teaching how to handle new natural language
(NL) inputs. However, our formative study found that when teach-
ing new NL inputs, users require assistance in clarifying ambigui-
ties that arise and want insight into which parts of the input the
NLI understands. In this paper we introduce ONYX, an intelligent
agent that interactively learns new NL inputs by combining NL
programming and programming-by-demonstration, also known
as multi-modal interactive task learning. To address the aforemen-
tioned challenges, ONYX provides suggestions on how ONYX could
handle new NL inputs based on previously learned concepts or
user-defined procedures, and poses follow-up questions to clarify
ambiguities in user demonstrations, using visual and textual aids to
clarify the connections. Our evaluation shows that users provided
with ONYX ’s new features achieved significantly higher accuracy
in teaching new NL inputs (median: 93.3%) in contrast to those
without (median: 73.3%).

CCS CONCEPTS
• Human-centered computing→ User interface programming;
Natural language interfaces.

KEYWORDS
Interactive Task Learning, End User Development, Natural Lan-
guage Interfaces, Data Visualization Tools

ACM Reference Format:
Marcel Ruoff, Brad A. Myers, and Alexander Maedche. 2023. ONYX: Assist-
ing Users in Teaching Natural Language Interfaces Through Multi-Modal
Interactive Task Learning. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems (CHI ’23), April 23–28, 2023, Ham-
burg, Germany. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3544548.3580964

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3580964

1 INTRODUCTION
With the recent advances in natural language processing, users are
increasingly provided with the ability to interact through natural
language (NL) with their smartphones (e.g., Siri; Google Assistant),
the web (e.g., FireFox Voice [8]) or specific applications like data
visualization tools (e.g., Power BI Q&A; Tableau’s Ask Data). While
these NL interfaces (NLIs) initially pursued a one-size-fits-all design,
developers soon realized that different users or contexts require
supporting more personalized NL inputs [14] since users are other-
wise often quitting those NLIs instead of retrying after they face
breakdowns [22]. Therefore, users are able to teach some existing
NLIs how to handle new NL inputs in limited ways. For example,
NLIs can be taught by end users to perform custom procedures com-
bining multiple functionalities of the underlying system (procedural
knowledge), such as the custom commands provided by Apple’s Siri
[2]. Another example is how end users can provide synonyms to
existing concepts or define new concepts (declarative knowledge) to
improve the NLI’s understanding (e.g., what constitutes a “crucial”
customer in Power BI Q&A [28]).

To empower end users in extending the previously mentioned
NLIs, end user development techniques, such as visual program-
ming (e.g., Siri [2]; Google Assistant [1]) or simpler form-filling
techniques (e.g., Power BI Q&A [28]), are utilized to lower the bar-
riers. While visual programming is currently the key approach, it
has been shown over decades that creating programs with visual
programming languages is still relatively complex for most users
[6, 11, 15, 30]. First, end users struggle to select the correct visual
programming blocks from the extensive options to create their in-
tended program [6]. Second, detecting and fixing errors in their
visual programs is still a stumbling block [18, 30]. A promising
approach to address these challenges is interactive task learning
(ITL). ITL-based systems do not require end users to search for
correct visual programming blocks or familiarize themselves with
a programming language. Instead, ITL-based systems combine NL
programming and programming-by-demonstration to learn from
multi-modal user demonstrations of the task in the actual system
[20].

A fundamental challenge in ITL-based systems is their ability
to not only learn macro recordings of specific user demonstrations
but to be able to generalize the derived knowledge to support users
in performing similar tasks. While previous research on ITL has
improved the NLIs’ ability to generalize declarative knowledge (i.e.,
concepts such as hot and cold [25] and values such as customer
names [19, 21]) and utilize previously defined declarative knowl-
edge during future demonstrations [25], research opportunities still

https://doi.org/10.1145/3544548.3580964
https://doi.org/10.1145/3544548.3580964
https://doi.org/10.1145/3544548.3580964

CHI ’23, April 23–28, 2023, Hamburg, Germany Ruoff et al.

remain in generalizing and reusing procedural knowledge. Improv-
ing the generalization of procedural knowledge is crucial since
ambiguities contained in demonstrations through direct manipula-
tion either lead to a narrow understanding of the demonstrated task
or require many demonstrations of the same task [46]. Additionally,
end users want to build on existing user-defined procedures and
therefore need insight into which parts of a new NL input the NLI
understands and can already handle.

Therefore, we introduce ONYX, an intelligent agent that is able
to learn both procedural and declarative knowledge through ITL.
Essential capabilities of ONYX are its ability to generalize proce-
dural knowledge, and its ability to provide insight into existing
declarative and procedural knowledge during the teaching of new
NL inputs. ONYX learns both from users’ direct manipulations
(programming-by-demonstration) andNL inputs (NL programming)
after encountering a new NL input. Three key novel aspects of
ONYX ’s design are the (i) suggestions, (ii) follow-up questions, and
(iii) guidance through visual and textual aids provided by ONYX.
First, through suggestions ONYX describes how it can handle new
NL inputs based on previously learned concepts and user-defined
procedures. Second, follow-up questions are utilized to accurately
abstract and generalize procedural knowledge by clarifying pos-
sible ambiguities in direct manipulation demonstrations by end
users. Third, to provide users with guidance at crucial stages of
the demonstration process, ONYX provides visual and textual aids,
such as connecting the concepts ONYX understood in the new NL
input to their associated visual elements in the GUI (i.e., buttons
and data fields).

We demonstrate ONYX ’s capabilities in a custom-built data vi-
sualization tool since data visualization tools (1) facilitate complex
actions which possibly exhibit ambiguities [46], (2) have a wide
range of NL inputs users want to utilize while little labeled NL input
exists to train these NLIs to understand this variety [39], and (3) the
expressiveness of current learning approaches of new NL inputs is
limited (e.g., [28, 41]). We integrated a dataset about the COVID-19
pandemic [10] since end users are familiar with this data and the
possible insights they might want to derive.

In developing ONYX, we took a user-centered design approach
using iterative participatory design with 10 participants to explore
what issues end users face in NLIs with ITL capabilities and to
derive new designs for ONYX to address these challenges. Over
the course of four months, we performed six iterations of ONYX
with 2 - 4 participants per iteration. Each participant took part in
two consecutive iterations so we could get feedback from them
both when they have minimal knowledge of ONYX in their initial
iteration, and in the subsequent iteration where they have a deeper
understanding.

After building ONYX based on that feedback, we performed
an online summative evaluation with 42 participants. Further, a
think-aloud study with 5 participants provided evidence for the
effectiveness and usability of our final design and offered additional
details on how users utilize our novel features.

To summarize, the contributions of this paper are:

(1) A multi-modal ITL approach to enhance existing NLIs it-
eratively through programming-by-demonstration and NL
programming, with the following major advantages:

(a) Suggestions provided during the demonstration pro-
cess give users insight into how the ITL agent could han-
dle new NL inputs based on previously learned concepts
or user-defined procedures and enable users to focus on
concepts and procedures that are currently unknown to
the ITL agent.

(b) The ITL agent uses follow-up questions to clarify ambi-
guities in the user’s direct manipulation demonstrations
to facilitate the abstraction and generalizability of the de-
rived procedural knowledge.

(c) Users receive a display of the ITL agent’s understand-
ing of the new NL input grounded in known concepts and
visually tied to GUI elements to provide users a deeper
understanding of the ITL agent’s declarative knowledge.

(2) TheONYX system: an implementation of the aforementioned
approach, along with a formative study (n = 10) highlighting
issues end users face in existing NLIs with ITL capabilities,
along with an online experiment (n = 42) and think-aloud
study (n = 5) summatively evaluating its effectiveness and
usability. The final evaluation shows that users provided
with ONYX ’s suggestions and follow-up questions achieved
significantly (p < 0.001) higher accuracy in teaching new NL
inputs (median: 93.3%) in contrast to those without (median:
73.3%).

2 RELATEDWORK
In this section, we discuss prior work in three areas related to our
ONYX system: ITL in general, NLIs with learning capabilities, and
NLIs for data visualization tools.

2.1 Learning Tasks through Demonstrations
Interactive Task Learning enables end users to automate tasks with-
out requiring them to write code. Instead, users demonstrate the
actions required to complete the task, similar to how they would
perform the task without ITL. These demonstrations are then uti-
lized to extract the procedural (i.e., relevant actions) and declar-
ative knowledge (i.e., concepts and values) to create a script. Ex-
tensive possibilities of tracking and learning from demonstrations
(e.g., through APIs [23, 27] or through internal data of the system
[3, 19, 44]) have been used in diverse application areas including
the creation of GUIs [31, 44] or information visualizations [46], and
the automatization of tasks on mobile phones [23, 36], on the web
[12, 21], or with robots [40, 42].

A major challenge in all application areas is the generalization
of the underlying procedural and declarative knowledge to support
users in performing similar tasks to those demonstrated. Existing
systems focus on generalizing the declarative knowledge by pa-
rameterizing the utilized values and concepts either by involving
users during the demonstration process (e.g., [12, 19]) or automati-
cally by the system based on internal knowledge (e.g., underlying
datasets [21]). However, besides generalizing declarative knowl-
edge, it is also crucial to generalize procedural knowledge. Most
importantly, direct manipulations, the main source currently for
demonstrations in ITL-based systems, only communicate what a
user does and not why or how to perform these actions in varying
contexts. Therefore, possible ambiguities in the direct manipulation

ONYX: Assisting Users in Teaching Natural Language Interfaces Through
Multi-Modal Interactive Task Learning CHI ’23, April 23–28, 2023, Hamburg, Germany

need to be clarified to accurately generalize the scripts by deriving
the underlying procedural knowledge [25, 46]. APPINITE [24] aims
to address this challenge by involving users to clarify ambiguities.
Specifically, after APPINITE detects an ambiguity it allows users to
describe their intention through NL. However, solely relying on end
users to clarify the ambiguities is risky as end users have problems
expressing in NL the correct conditions without assistance from
the system [9]. Hence, we investigate how end users can be assisted
by ONYX in clarifying ambiguities to abstract direct manipulation
demonstrations by answering follow-up questions asked by ONYX
that only require users to choose among possible interpretations of
that ambiguity.

2.2 Natural Language Interfaces with Learning
Capabilities

Learning newNL inputs is an important application for ITL since NL
allows end users to easily perform complex tasks (i.e., conditional
tasks [25]), automate frequently performed tasks [3, 23], access
infrequently used actions [17], or provide more natural phrasings
for existing NL inputs [45].

To assist end users in teaching new NL inputs, end users require
insight into which parts (e.g., words, phrases, and concepts) of a
new NL input the NLI understands and can already handle. Most
NLIs with learning capabilities, however, do not provide insights
into existing declarative (i.e., concepts) and procedural (i.e., actions)
knowledge during the demonstration process (e.g., [5, 17, 23, 45]).
In contrast, PUMICE [25] provides insight into previously learned
declarative knowledge like the concepts hot or cold during the
demonstration process through a multi-turn conversation. How-
ever, PUMICE only utilized existing procedural knowledge (i.e.,
user-defined procedures) if PUMICE has an understanding of how
to perform the complete procedure but does not provide insights
if it has a partial understanding of what actions it should perform.
Providing insight into procedural knowledge differs from insights
into declarative knowledge. While PUMICE has to clarify declara-
tive knowledge which can be categorized into boolean and value
conditions with their corresponding concepts and values and hence
can be easily parsed into a depth-first fashion [25], ONYX has to
provide insights into procedural knowledge that can consist of a
previously unknown number of actions which can build on top of
each other or are completely independent and hence it is difficult for
the system to define the relation beforehand. Similarly to PUMICE,
AutoVCI [35] enables users to teach synonyms for the NL inputs
utilizing existing procedural knowledge for complete NL inputs.
In addition, ONYX allows the combination of previous procedural
knowledge of multiple existing NL inputs to inform the teaching of
new NL inputs through suggestions.

2.3 Natural Language Interfaces for Data
Visualization Tools

NLIs have been increasingly utilized to assist users in analyzing and
exploring data in data visualization tools (e.g., [13, 16, 26, 37, 38]).
Previous studies showed that extending data visualization tools
through NLIs particularly helps users perform tasks that would
otherwise require multiple adjustments in the GUI [37] or complex
filter settings [16]. However, while the variety of use cases has

grown over the last decades, a large gulf between user expectations
and the capabilities of NLIs still exists [43].

The major challenge of NLIs in data visualization tools is that
users expect the NLI to understand a wide range of NL inputs to
create and adapt the data visualizations [39], and expect the NLIs
to have a deep understanding of the context and dataset the users
are currently working with [43]. When current NLIs for data visu-
alization tools fail to understand the users’ goal of an NL input they
either prompt users to retry their action differently [16, 38] or in-
volve the user to clarify possible misunderstandings in the NL input
[13, 32, 37]. While the latter already improves the user experience of
NLIs for data visualization tools [13], existing systems do not learn
from these demonstrations for future interactions except for sim-
ple form-filling techniques (e.g., [28]) and therefore continuously
require end users to clarify the same misunderstandings.

Hence, we investigate ONYX in the context of data visualization
tools to showcase how an NLI can learn from demonstrations to
increasingly improve its coverage of the NL inputs users want to
utilize.

3 FORMATIVE STUDY & DESIGN GOALS
We took a user-centered approach [29] to address issues end users
face in existing NLIs with ITL capabilities by using participatory
design. We recruited 10 participants (8 males; 2 females; M = 27.5
years SD = 11.4) over the course of 4 months. Each participant took
part in two sessions one week apart (about 1 hour per session). In
each session, participants first completed target replication tasks
and afterward an open-ended data exploration to additionally un-
derstand howONYX impacts users’ analytic flow.We recorded their
think-aloud statements, coded them, and derived (among others)
the following insights.

The full findings of this study have been previously published
as a poster1, but we summarize the most relevant insights from the
formative study for the design of ONYX next. From these insights,
we distilled six design goals (DGs) for enabling effective ITL for
NLIs.

3.1 Understanding of the NLI’s Existing
Knowledge

In the earlier stage of the participatory design process, while users
generally understood how they could demonstrate the meaning
of an NL input to the system due to an initial introduction by
the supervising researcher and a textual introduction by the ITL
agent after the breakdown, they did not know what they need
to teach ONYX. Especially because ONYX ’s error messages were
generic, like in many other NLIs [4]. Participants, therefore, tried to
derive the NLI’s existing understanding of their NL input during the
demonstration process in a trial-and-error approach by changing
the NL input incrementally and paying attention to whether ONYX
understood this adapted NL input as part of its NL programming
capabilities. However, this caused significant disruptions to their
analytic flow.

1To preserve the anonymity of this submission, in the supplementary material we
provide an anonymized version of that paper that describes the formative study in
more detail.

CHI ’23, April 23–28, 2023, Hamburg, Germany Ruoff et al.

DG1. Be specific about what parts of the NL input the
NLI understood and did not understand.

Participants utilized this trial-and-error approach to get insight
into both the (i) procedural and (ii) declarative knowledge the NLI
possesses. First, when ONYX failed to understand a joined NL input
(e.g., Remove Deaths and focus on Cases or Show states with more than 1 million cases)
some participants would enter the parts of the NL input during
the demonstration separately to check whether ONYX possesses
procedural knowledge for parts of the NL input.

DG2. Provide suggestions based on the parts of the NL
input the NLI understood.

Further, participants were often unsure whether ONYX failed
due to missing declarative or procedural knowledge. For example,
in the NL input Give me TX ONYX could either lack proce-
dural knowledge for how to handle Give me [something], lack
declarative knowledge that TX is an abbreviation for Texas or both.
Hence, participants were comparing parts of the NL inputs with
labels in the GUI elements to reassure themselves which concepts
they thought ONYX understood, and which it did not.

DG3. Ground the NLI’s declarative knowledge for parts
of the NL input through visual and textual aids utilizing the
GUI elements.

3.2 Ambiguous Direct Manipulation
Demonstrations

Participants mostly utilized direct manipulations for their demon-
strations, similar to users in other ITL-based systems [23]. Hence,
abstracting and generalizing the direct manipulation demonstra-
tions is especially important to derive an accurate script.

However, participants realized that when ambiguities occur in
direct manipulation interactions, ONYX occasionally chose the
wrong interpretation of their demonstration. In our initial version,
participants appreciated the ability to directly edit a visual repre-
sentation of the script during the demonstration as this simplified
changes and deletions in the script if they noticed misunderstand-
ings. Participants additionally acquired an understanding of the
current interpretation of their actions by ONYX through this visual
representation.

DG4. Enable users to edit the ITL agent’s understanding
of the demonstrations performed.

However, sessions using early versions highlighted two short-
comings of solely relying on this visual representation of the script
for addressing misunderstandings. First, if users did not notice the
incorrect interpretation of the ambiguous direct manipulation they
would not try to clarify. Second, if users did notice the incorrect
interpretation, they would only realize that the interpretation is
incorrect, but not what caused this unwanted behavior. Hence, ear-
lier sessions reveal the need for ONYX to actively notify users of
ambiguities and subsequently describe the possible interpretations
for users to choose from.

DG5.Address ambiguities in directmanipulation demon-
strations through follow-up questions.

3.3 Design of Assistance
After addressing the challenges mentioned above by assisting users
through suggestions, follow-up questions, and additional visual and
textual aids, the subsequent iterations of user studies highlighted
the positive effect of these features on lowering the disruption
of participants’ analytic flow. However, participants additionally
highlighted two design trade-offs with the design of this assistance:

Timing of Assistance: While asynchronously providing assis-
tance would minimize disruptions (e.g., at the end of the demonstra-
tion process), synchronous assistance helps users better understand
the information ONYX requires to learn how to accurately handle
the new NL input.

Modality of Assistance:While visually presenting follow-up
questions as GUI elements helps users make fast decisions, users
can better understand the ambiguity ONYX is trying to address
when ONYX provides textual follow-up questions.

In our context, we opted to have ONYX use synchronous as-
sistance and textual follow-up questions. Additional iterations of
participatory design highlighted that a deep understanding of the
information ONYX requires is more urgent than being incremen-
tally faster. Furthermore, the disruptions of synchronous assistance
were minor due to additional visual and textual aids that guide end
users in the utilization of the assistance.

DG6. Guide users’ attention during assistance through
visual and textual aids to minimize the disruption caused by
the interruption.

4 ONYX
In this section, we describe how ONYX incorporates the previ-
ously articulated design goals. Specifically, we describe an example
scenario that illustrates how users can personalize the NLI. Subse-
quently, we detail how ONYX : (i) learns from multi-modal demon-
strations, (ii) derives suggestions, (iii) identifies ambiguities in the
demonstrated actions, (iv) provides visual and textual aids, and (v)
generalizes the derived scripts.

4.1 Example Scenario
Mikki, a student from North Carolina recently moved to Pennsyl-
vania for her studies. She aims to utilize ONYX, which integrates
a dataset [10] about the COVID-19 pandemic in the United States
of America. We will utilize this dataset throughout this paper to
provide consistency.

To get an understanding of the course of the pandemic in her
home state, Mikki starts with a scatterplot visualization that depicts
deaths on the y-axis, fully vaccinated on the x-axis, and a color
encoding based on the dates since the beginning of the pandemic fil-
tered for North Carolina (see Figure 1). To focus on some points
of interest she enters the NL input Focus on those with less
than 1 million fully vaccinated into theNLI.WhileONYX would
understand other NL inputs for this goal, it does not yet understand
how to handle the NL input that Mikki used. However, Mikki would
prefer to use her own NL input as it feels more natural to her. Af-
ter deciding to teach ONYX, ONYX provides feedback in the NLI
and provides in its training interface an explanation of ONYX ’s
understanding of the NL input (DG1 & DG3). Additionally, ONYX

ONYX: Assisting Users in Teaching Natural Language Interfaces Through
Multi-Modal Interactive Task Learning CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 1: Data Visualizations and NL Inputs utilized in the Scenario.

provides suggestions on how to handle parts of the NL input for
Mikki to reuse and build on (DG2). In this case, ONYX reuses pro-
cedural knowledge for less than 1 million fully vaccinated. The
changes are directly carried out in the data visualization tool (see
Figure 2) and added to the current understanding section of the
UI (see Figure 2). ONYX further gives a brief explanation in the
NLI on which part of the NL input the suggestion is based on (see
Figure 2). If the suggestion did not fit Mikki’s understanding,
she could refine or delete the suggestion (see Figure 2). However,
since the suggestion fits her understanding, she checks the visual
representation of the script and finishes the demonstration as the
visual representation of the script already fits her understanding
of the NL input. ONYX immediately responds that this NL input is
now available to her.

She wants to focus on the vaccination roll-out and therefore en-
ters Now focus on those with less than 200,000 fully vaccinated .
Due to her previous demonstration, ONYX knows how to handle
this NL input and adapts the data visualization accordingly (see
Figure 1).

Now Mikki wants to know if Pennsylvania has a similar trend.
Hence, Mikki enters Switch to Pennsylvania . Again, ONYX
does not know how to handle the NL input and therefore initi-
ates the demonstration mode (see Figure 3). After deciding to
demonstrate the NL input, Mikki directly removesNorth Carolina
from the current selection of states displayed in the visualization.
This triggers an ambiguity in the back-end of ONYX since ONYX
is unsure if Mikki wanted to (i) specifically delete North Carolina
or (ii) if all states should be removed from the selected states. This
is crucial since Mikki might later use this NL input again with dif-
ferent or even multiple states selected. Hence, ONYX prompts a
follow-up question in the NLI which asks whether Mikki wanted
to remove all states from selected states as a yes/no question (DG5

& DG6) (see Figure 3). After reading the question, she quickly
selects Yes as the appropriate answer and ONYX adapts its under-
standing in response (see Figure 3). Mikki performs the rest of
the actions and finishes the demonstration mode to which ONYX
responds that the action is now available to her (see Figure 3).

Mikki might now use similar NL inputs during further explo-
ration with different parameters in the NL input such as different
values in the numeric relation of the first NL input or different
states instead of Pennsylvania in the second NL input.

4.2 Key Design Features
4.2.1 Learning from Multi-Modal User Demonstrations.
To allow users to demonstrate actions using both direct manipula-
tion and NL input, ONYX utilizes programming-by-demonstration
and NL programming to translate both types of interactions into a
common script. One way that users are able to adapt the script is
by adapting its visual representation (see Figure 2) by selecting
a different keyword in the display of an action to correct minor
misunderstandings (DG4) (see Figure 4). Major misunderstand-
ings can be addressed by deleting the incorrect parts of the script
and redoing them. To continuously check whether the goal of the
NL input has been attained, ONYX compares the concepts the user
utilized in the script with the ones extracted as parameters from the
initial NL input. If all parameters have been utilized, then ONYX
inquires whether the user has completed the demonstration (see
Figure 4).

4.2.2 Suggestions.
ONYX provides suggestions based on procedural knowledge associ-
ated with (i) existing user-defined procedures and (ii) known concepts
utilized in the NL input. First, suggestions can be triggered if parts
of the NL input are similar to known NL inputs and fulfill the re-
quirements of its associated user-defined procedures (see Figure 5

CHI ’23, April 23–28, 2023, Hamburg, Germany Ruoff et al.

Figure 2: User Interface of the Data Visualization Tool with integrated ITL-based NLI during the Demonstration Process.
Visualization canvas, Buttons to adapt chart type and encodings, Filter pane to provide constraints, NLI providing text
input and feedback, Signalling indicator and buttons to finish the demonstration mode, NL input to be demonstrated,
Visual Representation of the Script.

). Second, to provide insightful suggestions when only a few user-
defined procedures exist, ONYX additionally provides suggestions
based on known concepts. Only numeric filters and chart types
can trigger suggestions (see Figure 5) as they are associated
with one specific type of procedural knowledge. Concepts such as
dimensions, on the other hand, can be associated with multiple (e.g.,
filtering, selecting/removing as axis, etc.) and hence could lead to
incorrect suggestions.

After receiving the NL input from the NL Parser and its asso-
ciated information (i.e., dependency tree, numeric relations, and
named entities), ONYX searches in a depth-first manner for parts
of the NL input ONYX knows how to handle (DG2) (see Figure
5). It saves the suggestions together with neighboring parts of the
NL input that need to be demonstrated. ONYX provides these sug-
gestions in the order they occur in the NL input. If not actively
requested by users, ONYX only provides the next suggestion after
the parameters contained in the neighboring parts of the NL input
are utilized in the users’ demonstrations.

ONYX makes a suggestion by performing the associated actions
directly in the data visualization tool and updates the script and
the associated visual representation (see Figure 4). Furthermore,
in the NLI, ONYX provides a short explanation of which part of the
NL input its suggestion is based on, what actions it performed, and
which parts of the NL input associated with the suggestion it did
not understand (see Figure 4).

In the example depicted in Figure 5, ONYX provides the first sug-
gestion regarding the numeric relation (see Figure 5). It requests
the user to demonstratewhat the component Show me all states
means because it recognized that these components are connected.
The suggestion in Fig. 5 is only provided after ONYX recog-
nizes that the user demonstrated something connected with the
concept ”states” (i.e., selecting a state filter). Users can also actively
request additional suggestions by utilizing the NLI (e.g., by entering

Next suggestion or Help me).

4.2.3 Follow-UpQuestions.
Follow-up questions are used in ONYX to abstract the meaning
of low-level direct manipulations to a higher-level understanding
by addressing possible ambiguities. To detect these ambiguities in
the users’ demonstrations, ONYX utilizes conditions based on the
parameters extracted from the NL input, the current script, and
the demonstration performed (DG5). The conditions integrated
into the current instantiation of ONYX are able to detect (i) direct
manipulation demonstration ambiguities, such as whether users
wanted to remove the specific state manipulated or all states if the
selected states are empty afterward and (ii) language ambiguities,
such as if states in Show me all states refers to the filter or also
to the legend of the data visualization.

Direct manipulation demonstration ambiguities are only triggered
if ONYX decides that it can not clarify the ambiguity on its own
by utilizing information from the articulated NL input to preserve

ONYX: Assisting Users in Teaching Natural Language Interfaces Through
Multi-Modal Interactive Task Learning CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 3: Progression of the User Interface, the Script, and the ITL Agent during the Training for the NL Input
Switch to Pennsylvania .

users from unnecessary interruptions. For example, when ONYX
is unsure whether users only want to remove a specific state or
all states, ONYX assumes the former is the correct interpretation
without involving users if the removed state was utilized in the NL
input.

If ONYX decides that the user is required to abstract the meaning
of the direct manipulation demonstration, then ONYX directly asks
the follow-up question after one of the conditions is triggered (syn-
chronous assistance) (see Figure 6). Users can directly address
the ambiguity by selecting Yes or No in the NLI or they can continue
the demonstration process and address the ambiguity in the visual
representation of the script. If multiple conditions for ambiguities
are triggered, then ONYX prompts the next follow-up question only
after the previous one is clarified to avoid information overload.

4.2.4 Visual and Textual Aids.
Aids for the NL Input. To provide users at the beginning of the

demonstration process an understanding of why the NLI failed,
ONYX utilizes the extracted procedural and declarative knowledge
to highlight the parts it did understand (DG1). Users can request a
visual and textual aid by hovering over the underlined named enti-
ties (i.e., measures, dimensions, and categorical filters) and numeric
relations of the NL input (see Figure 7). Upon hovering, ONYX
provides a short explanation of its declarative knowledge (e.g., that
it recognizes it as a filter) and exemplary actions based on the cur-
rent context of the data visualization tool (procedural knowledge)
as a textual aid. Furthermore, ONYX provides visual aids to ground
these concepts in the GUI by highlighting the corresponding GUI
elements, such as filter panes or labels (see Figure 7) (DG3).

Aids for Follow-up Questions. Visual aids for follow-up ques-
tions are requested by users either by hovering over the follow-up
question in the NLI (see Figure 6) or by hovering over the GUI el-
ement that triggered the ambiguity (see Figure 6). ONYX guides

CHI ’23, April 23–28, 2023, Hamburg, Germany Ruoff et al.

Figure 4: Screenshot of the UI when ONYX detects a possible
Goal Attainment during the Demonstration Process.

the attention of users by connecting the GUI element associated
with the ambiguity to the follow-up question with a color-coded
line (see Figure 6) (DG6).

4.2.5 Generalization.
ONYX is able to learn knowledge on three levels of generalizability
by utilizing the named entities and numeric relations to parameter-
ize both the derived script and the associated NL input. First, verbs
(e.g., Giving [something]/ Focusing on [something]) and their
connected procedural knowledge are generalized across various
datasets and are only dependent on the functionality provided by
the GUI. Second, ONYX links named entities (e.g., States) and rela-
tions to abstract concepts specific to data visualizations (e.g., Dimen-
sions, Measures) (see Figure 5). The ITL agent only utilizes the ab-
stract concept for deriving the possible values for parameters in the
NL input and is, hence, able to generalize NL inputs across different
datasets. However, currently, a JSON-Filemust be changedmanually
that maps data fields in the data set to their abstract concepts (e.g.,
{'Measures': ['Deaths',...], 'Dimensions': ['States',...]}).
Third, ONYX is able to learn a narrow understanding of concepts
that are connected to a specific data field (e.g., southern states,
soaring number of deaths) and therefore would, e.g., support asking
about southern states in other datasets, but not southern countries.
This is due to the fact that ONYX connects this to a well-defined
condition (e.g., southern states are Texas, Mississippi, ... / soaring
refers to values higher than ...).

4.3 System Architecture
The ONYX system employs a web-based, client-server model. It
utilizes HTML5, CSS3, and JavaScript for its web-client and Python
for the access and processing of the dataset. The interface manager
coordinates the communication between the user interface ofONYX
and its NL Parser and ITL agent. The data visualization tool ofONYX

is built on the D3.js library [7] and supports bar charts, scatterplots,
and map charts as visualizations as well as categorical and numeric
filters.

Figure 8 depicts ONYX ’s architecture with its three main com-
ponents: (i) Interface Manager, (ii) NL Parser, and (iii) ITL agent.

4.3.1 Natural Language Parser.
The NL input entered in the NLI is forwarded to an NL Parser. First,
the NL Parser utilizes the results from Microsoft’s Language Under-
standing and Intelligent Service (LUIS) as well as the parts of speech
tags and the dependency tree from Google Cloud Natural Language
API to extract named entities and relations. Subsequently, the NL
Parser identifies whether the users’ NL input is targeted at (i) adapt-
ing the visualization (e.g., Switch to Pennsylvania) or at (ii) in-

teracting with the ITL agent (e.g., Finish the demonstration) by
utilizing LUIS intent classification that is fine-tuned on examples
extracted from the formative study and additional examples gener-
ated by the researchers. If the NL input is targeted at adapting the
data visualization, the NL Parser applies a lexicon-based approach
utilizing a Bigram Dependency Kernel [34] to derive the associated
script from the NL Lexicon. The NL Lexicon is instantiated as a table
consisting of entries for all previously trained NL inputs specifying
(i) the parameterized trained NL input as an index, (ii) a parame-
terized bigram-representation of the NL input, (iii) the associated
parameterized procedural knowledge, (iv) the required concepts
that need to be included in the NL input, and (v) the ID of the user
who taught the NL input or whether it is a foundational NL input
provided by developers. Subsequently, the NL Parser augments the
generalized script with the previously extracted named entities and
relations and forwards it to the Interface Manager to execute the
augmented script. If the NL Parser does not find an associated script
in the NL Lexicon for the articulated NL input, the ITL agent gets
triggered.

4.3.2 Interactive Task Learning Agent.
The ITL agent of ONYX utilizes the internal state of the data visu-
alization tool to access user demonstrations. If the demonstration
mode is active, the ITL agent derives a script from the continuous
user demonstrations. Through this unified script, ONYX is capa-
ble of learning how to handle NL inputs that can also be achieved
through direct manipulation. After completing the demonstration
mode, the ITL agent checks whether named entities or numeric
relations in the NL input also have been utilized in the derived
script. The detected instances are then parameterized in the derived
script and connected to the named entity or numeric relation in the
NL input that has been used for parameterization to enable ONYX
to select the right parameter during future usage. The NL input is
then stored as a new entry in the NL Lexicon.

5 EVALUATIVE USER STUDIES
We conducted an online experiment and a think-aloud study to
evaluate the effectiveness of ONYX. We deliberately chose to ini-
tially provide ONYX with only a small set of existing procedural
knowledge that covered manipulating all GUI elements. In this, our
goal is to show that even with this limited set of known concepts
and user-defined procedures, users are still effectively assisted by
ONYX in accurately demonstrating new NL inputs.

ONYX: Assisting Users in Teaching Natural Language Interfaces Through
Multi-Modal Interactive Task Learning CHI ’23, April 23–28, 2023, Hamburg, Germany

Show me all with more than 5 million cases and add the to the x-axis

Show

me states and add the number of tests to the x-axis

all with

more than 5 million cases

Task-related

Keyword:

Suggestion based on numeric filter

utilized in the initial NL input

Suggestion based on similarity to

known NL inputs, such as:

“Add cases to the x-Axis”

Numeric Filter

A

B

Figure 5: A Sample Sentence tagged and processed by ONYX to derive Suggestions. The Words of the Sentence are connected
with directed Arrows based on their Dependency Structure.

Figure 6: Follow-Up Question, after ONYX detects a Direct Manipulation Ambiguity in the last User Action.

Figure 7: UI when Users hover over underlined Parameters during the Demonstration Process, with highlighted States Filter at
.

In both studies, participants were asked to address three break-
downs of ONYX by demonstrating the meaning of the NL input
through direct manipulation and/or NL inputs. With the online
experiment, we aimed to provide evidence for the effectiveness
of the design goals instantiated in ONYX by utilizing a version of
ONYX without the suggestions (DG2) and without the follow-up
questions (DG5 & DG6) as a baseline condition as we could not

find similar tools that support users with little programming ex-
pertise to complete the target tasks. The baseline version of ONYX
still includes the ability to learn from NL inputs (DG1: see Section
4.2.1) and basic visual and textual aids (DG3: see Figure 7) to avoid
an unfair comparison. The think-aloud study provided us with a
deeper insight into the behaviors of participants.

CHI ’23, April 23–28, 2023, Hamburg, Germany Ruoff et al.

Figure 8: System Architecture Overview.

5.1 Participants
For our online experiment, we recruited 42 participants (20 male,
20 female, 2 non-binary) aged between 26 - 62 (M = 40.3, SD =
8.8) on Amazon Mechanical Turk. The participants were randomly
assigned to one of the two conditions (baseline = 21; treatment =
21). Across both treatments, they exhibited minor experience in
programming with 81% rating their experience as poor or fair and
an average experience of 2.3 years in programming (SD = 4.8). 90% of
our participants rated their experience with NLIs as either average
or better than average. Participants are denoted as PO1.T-PO21.T
for the treatment and PO1.B-P021.B for the baseline condition in
subsequent sections.

The 5 participants (3 male, 2 female) recruited for our think-
aloud evaluation from a signup list of university students and
the general public exhibited similar characteristics, with ages rang-
ing between 23 - 68 (M = 40.4 SD = 20.9) and minor experience in
programming (100% said their programming experience was poor).
3 out of the 5 participants (60%) rated their experience with NLIs
as either average or better than average. All think-aloud partici-
pants were provided with the complete version of ONYX. These
participants are denoted as PT1-PT5 in subsequent sections.

5.2 Procedure
At the beginning of both the online experiment and the think-
aloud study, participants agreed to our IRB-approved consent form
and were then provided with a pre-study questionnaire to elicit
their demographics and their experience with programming and
NLIs. Then, participants received an interactive guided tour that
trained them in interacting with the data visualization tool. This
tour did not include an introduction to the ITL aspects of ONYX.
This provided participants with a basic understanding of the data
visualization tool and ensured that the studies evaluated the ef-
fectiveness of the ITL and NLI aspects of ONYX and not the data

visualization aspects. The interactive guided tour took participants
around 4 minutes to complete.

After the interactive guided tour, participants were provided
with three tasks in a randomized order. Participants were required
to proceed to the next task after they finished the demonstration
process when they felt they accurately taught ONYX how to han-
dle the NL input. After finishing they were not able to test their
demonstration. The participants in the think-aloud study were ad-
ditionally encouraged during this phase to think aloud and both
their voice and the screen containing ONYX were recorded for later
analysis.

After completing the tasks, participants were requested to fill out
a post-study questionnaire regarding their subjective experience
with the different features of ONYX. Finally, they were able to
provide feedback about ONYX in a free-text field.

5.3 Tasks
The three tasks consisted of an NL input and a short description
of its meaning, similar to previous evaluations of NLIs with ITL
capabilities [23]. We derived the tasks based on common NL inputs
in the formative study and ensured that key features of ONYX are
covered by the tasks. To make sure that users needed to train the
system with new NL inputs, we provided participants with NL
inputs that ONYX did not yet know how to handle.

Task A: Demonstrating theNL input Display all dates withmore than 500,000 cases .
This task focuses on providing suggestions (based on bold parts of
the NL input) and addressing language ambiguities. Online partici-
pants in both treatments required on average 93 seconds (Min = 36,
Max = 231, SD = 46.8) for the demonstration process, which was
significantly faster than Task B and Task C.

Task B: Demonstrating theNL input Only show Ohio and Florida on the 1st of September 2020 ,
which should only show Ohio and Florida for the 1st of September
2020 even if other states or dates had been previously displayed.

ONYX: Assisting Users in Teaching Natural Language Interfaces Through
Multi-Modal Interactive Task Learning CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 9: Target Visualizations after completing each Task A-C.

This task focuses on addressing direct manipulation ambiguities.
Online participants in both treatments required on average 123
seconds (Min = 56, Max = 257, SD = 51) for the demonstration
process.

Task C: Demonstrating theNL input Combine all states with less than 10 million inhabitants .
This task focuses on providing suggestions (based on bold parts
of the NL input). Online participants in both treatments required
on average 157 seconds (Min = 37, Max = 609, SD = 134.6) for the
demonstration process.

We further confirmed that existing NLIs, such as Tableau’s Ask
Data andMicrosofts Q&A, were not able to perform these NL inputs
correctly without user involvement (e.g., in Task C, Ask Data only
understood numeric filters and was not able to adapt the States
filter accordingly or understood the goal of combining).

5.4 Results
5.4.1 Suggestions and Follow-UpQuestions.
For participants in the online experiment, wemeasured the accuracy
of how well their demonstration fit the meaning of the NL input by
comparing the learned script from ONYX to a gold standard that
was derived from the task descriptions. Specifically, for all three
tasks, we calculated the accuracy as a percentage of how many of
the requirements are included in the learned script and whether
requirements are included that are not required based on the task
description. Participants interacting with the full version of ONYX
had significantly higher accuracy (median: 93.3%) than those in the
baseline condition (median: 73.3%) (U = 67.5; p < 0.001), based on a
Mann-Whitney U test (see Figure 10). The difference in the time it
took the participants to demonstrate the NL inputs (averaged across
all tasks) was not significant at a 0.05 level for the participants that
interacted with the full version (median: 120 s) and the baseline
version (median: 110.5 s) of ONYX (U = 209; p= 0.78).

For insights into why the accuracy of the two conditions of the
online experiment differed, we analyzed the reason for the errors.
We specifically investigated whether ONYX ’s follow-up questions
and suggestions helped reduce the errors for the treatment condi-
tion in contrast to the baseline condition. Therefore, we labeled each
incorrect section of the learned scripts based on whetherONYX pro-
vided no assistance for such errors (other) or if ONYX would assist
in avoiding such errors through follow-up questions or suggestions
(see Figure 11). In Task A and Task C, a third of the errors in the

Figure 10: Boxplot of the Accuracy and Time for both Con-
ditions for all 3 tasks. For Accuracy, a higher rating means
better Accuracy. For Time, a lower rating means better Time.

baseline condition was associated with a lack of suggestions (Task
A: 32.7%: Task C: 34.1%). A lack of follow-up questions targeting
language ambiguities was associated with 18.8% of the errors in
the baseline condition in Task A. In contrast, a lack of follow-up
questions targeting direct manipulation ambiguities was associ-
ated with 84.2% of the errors in the baseline condition in Task B.
However, participants in the treatment condition in Task B also
exhibited errors associated with follow-up questions as they were
able to ignore or decline the prompted follow-up questions.

Additionally, we asked participants in the post-study question-
naire of the treatment condition to rate statements regarding the
effectiveness of suggestions and follow-up questions of ONYX on a
5-point Likert scale where 1 is “strongly disagree” and 5 is “strongly
agree”.ONYX achieved an average score of 4.3 on “The assistant sup-
ports me through its suggestions” and 4.3 on “The assistant supports
me through its follow-up questions to my actions”, further supporting
the effectiveness of both the suggestions and follow-up questions
(see Figure 12). These ratings were further supported by statements

CHI ’23, April 23–28, 2023, Hamburg, Germany Ruoff et al.

Figure 11: The Average Error in the Learned Scripts across Tasks A - C colored by the Reason of the Error.

made by participants and through a post-hoc analysis of the log
data derived from user interactions.

Suggestions.
10 participants (47.6%) in the treatment condition of the online

experiment explicitly stated that the suggestions helped them in
their task in the free-text feedback field at the end of the post-study
questionnaire. Specifically, through these suggestions participants
(n = 7) understood what information ONYX required from them
and helped them start demonstrating to ONYX how to handle the
NL input. The statement “[ONYX] makes suggestions that are logical”
by PO8.T further illustrates the statements from four participants
that the suggestions they received were easy to interpret.

In the think-aloud study, wewere able to investigate more closely
how participants utilized the suggestions. All five participants no-
ticed at the beginning of the demonstration mode what ONYX
suggested, then checked if the suggestion fit their understanding
of the NL input, and finally proceeded to demonstrate the part of
the NL input ONYX did not yet know how to handle. For example,
at the start of the demonstration PT4 said “I would have done the
same” when checking the suggestions and PT3 said regarding the
process of using the suggestions: “I just had to check if it fits my
own thinking”. Two participants (40%) in the think-aloud study ad-
ditionally stated that the suggestions helped them to stay in the
analytic flow since the suggestions provided a good transition into
the demonstration process without major disruptions.

Follow-up questions.
The positive aspects of the follow-up questions were explicitly

mentioned by six participants (28.6%) in the treatment group of
the online experiment in the free-text feedback field. Participants
especially highlighted the understandability (n = 4) and timing (n =
3) of the follow-up questions. This is represented by the statement
“The questions were understandable and timely; that is, [ONYX] asked
for clarifications at appropriate times and confirmed that it understood
specific requests at appropriate times, as well” by PO20.T. However,
one participant in the online experiment also highlighted a negative
aspect of the follow-up questions. PO15.T said: “I found it difficult
to demonstrate one NL input at a time and respond to the chat”.
Additionally, in the think-aloud study, two participants highlighted
that they had problems with the follow-up questions at first because
they did not notice the textual aid in the NLI as their focus was
on another GUI element. For example, PT5 stated that the focus of
their attention “was over in the filter section. And not really looking
at all the questions”. This was supported by our log data as while

55.2% of follow-up questions were addressed by participants, 44.8%
were unnoticed or incorrectly disregarded. However, PT5 further
stated that it was easy to learn how to spot follow-up questions
after noticing them for the first time, suggesting a learning effect.

To investigate this learning effect associated with follow-up
questions closer, we analyzed the log data regarding the timing of
follow-up questions prompted by ONYX and whether participants
addressed them. Across all tasks, participants received a maximum
of three follow-up questions per task. Participants sometimes re-
ceived few or no follow-up questions during certain tasks which
complicated the derivation of clear measures to assess the learning
effect. Especially in Task C, only 4 participants received follow-up
questions since performing the correct demonstrations did not trig-
ger any follow-up questions. However, if participants still received
a follow-up question due to additional incorrect demonstrations,
they correctly addressed these follow-up questions. In Task A and
Task B, all participants received at least one follow-up question.
However, only six participants (28.6%) addressed this first follow-up
question in Task A and only 10 (47.6%) in Task B. When participants
received a second follow-up question, they increasingly addressed
this follow-up question (Task A: 58.8%; Task B: 65%). In Task B, 11
participants received a third follow-up question, which was noticed
and addressed by 81.8%.

5.4.2 Visual and Textual Aids.
Seven participants (16.7%) of both conditions in the online exper-
iment highlighted in the free-text feedback that the visual and
textual aids helped them better understand what ONYX understood
and what ONYX did not understand in their NL input. This helped
them “learn what information [ONYX] needs” as stated by PO19.T
and two additional participants.

Based on the log data of participants, we analyzed for which
concepts participants requested visual and textual aids. The aids
can be categorized into visual and textual aids helping participants
understand the concepts in the NL input (e.g., numeric relations,
named entities) and visual aids helping participants understand
follow-up questions (see Figure 14). While both conditions received
visual and textual aids regarding the NL input, only the participants
in the treatment condition could receive visual and textual aids
regarding follow-up questions (see Section 4.2.4). If the NL input
included concepts associated with named entities (e.g., Dates, Ohio,
or 1st of September 2020), participants requested the connected
visual and textual aid on average 1.82 times per task. Visual and

ONYX: Assisting Users in Teaching Natural Language Interfaces Through
Multi-Modal Interactive Task Learning CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 12: Responses to Post-Study Likert-scale Questions about the Experience of Participants with ONYX ’s Features.

Figure 13: The Number of Participants receiving and addressing Follow-up Questions at different Timings during the Task

Figure 14: The Average Number of Visual and Textual Aids requested by Participants across Tasks A - C in the Baseline and
Treatment Conditions. The Values are Colored by the Concept explained by the Visual and Textual Aid.

textual aids for numeric relations (e.g., more than 500,00 cases)
were requested on average 1.44 times per task. Participants mostly
requested visual aids for named entities and numeric relations before
performing the first demonstration to get insights into the NLI’s
understanding of their NL input. Participants requested visual aids
for follow-up questions in the treatment condition on average 1.32
times per task and 0.29 times per follow-up question.

5.4.3 Display and Adaptation of ONYX’s Understanding.
Regarding the effectiveness of the visual representation of ONYX ’s
understanding during the demonstration, 93% of participants agreed
or strongly agreed with “The display of the current understanding of
actions is useful for me to determine how to demonstrate my action
sequence”, 95% with “I can adapt the current understanding of actions

according to my personal needs” and 67% with “I find it easy to
understand what my utterances will do” (see Figure 12).

6 DISCUSSION
The results of our formative study highlighted the need for assisting
users in teaching NLIs how to handle new NL inputs through multi-
modal ITL. The outcome of the user studies shows that ONYX ’s
suggestions, follow-up questions, and visual and textual aids are
effective features to provide users with this kind of assistance. Par-
ticipants in our user studies were able to significantly reduce errors
in the learned scripts by requesting visual aids to receive a better un-
derstanding of ONYX ’s knowledge, following ONYX ’s suggestions,
and clarifying the follow-up questions prompted by ONYX.

CHI ’23, April 23–28, 2023, Hamburg, Germany Ruoff et al.

Assisting Users to Understand ONYX ’s Interpretations.
In our formative study, we learned that users had problems un-
derstanding how the earlier version of ONYX interpreted their NL
input at the start of the demonstration process and how it interprets
their demonstrations during the demonstration process. To address
these issues, our final design of ONYX assists users through sug-
gestions, follow-up questions, and visual and textual aids that are
targeted at improving the users’ understanding. Our quantitative
and qualitative results of the final user studies provide evidence
that ONYX ’s clear suggestions at the start of the demonstration
process assist users in understanding existing knowledge of ONYX.
Through users’ improved understanding, they are able to better de-
rive what demonstrations they need to perform. We further learned
that users are often unaware of possible ambiguities in their direct
manipulation demonstrations. This is highlighted in Task B of the
online experiment in which errors due to ambiguity accounted for
84.2% of the errors made by participants in the baseline condition.
Providing assistance through follow-up questions helped ONYX
reduce the errors due to ambiguities on average by 65.4%.

Learning to Utilize the Assistance.
In our user studies, we learned that users do not always follow the
advice of the system in a mixed-initiative approach, even if the
advice is correct. A central problem was that users first needed to
learn when and how ONYX provided them with assistance. After
they learned these two aspects they were able to improve their uti-
lization of ONYX ’s assistance in our user studies. Perhaps explicitly
introducing users to the assistance the first time they receive it
could further improve the utilization of ONYX ’s assistance by users
because their learning would be accelerated.

Making the Reason of Assistance Explicit.
Participants in our formative study highlighted that providing as-
sistance without clarifying the reason for the assistance can even
negatively influence the overall performance. This was because
the assistance can disrupt the analytic flow. These findings high-
light that more assistance is not always better. Our results on the
final system suggest that users increasingly benefit from the assis-
tance by ONYX if they are guided during the assistance through
visual and textual aids. Furthermore, providing assistance directly
after the event that triggered the need for assistance (synchronous
assistance) helps users better map the assistance to its reason. De-
velopers of ITL-based systems, therefore, need to ensure that the
assistance is designed in such a manner that the benefit of the
assistance outweighs its negative effects (e.g., interruptions). The
certainty of the ITL-based system about the correctness of the as-
sistance and its timing have to be taken into account to assess this
trade-off.

Adaptability of ONYX ’s Features.
Although we demonstrated ONYX ’s capabilities in just one data
visualization tool custom-built utilizing D3.js, we believe that the
strategies ONYX uses would generalize to other data visualization
tools. We point to similarities with other such tools, such as Power
BI, Tableau, or open-source frameworks like vega-lite. For any of
these, ONYX ’s features could be adapted to assist users in teaching

the NLI how to specify (i) the encodings of the data visualization
(e.g., the axes), (ii) the chart type, and (iii) numeric or categorical
filters. ONYX is able to learn to perform these functionalities inde-
pendent of the dataset when provided with the ability to track and
manipulate the state of the data visualization tool either through an
API or by directly integrating ONYX as in our case. However, ONYX
is restricted to functionalities that users can perform through direct
manipulation. Therefore, ONYX is, for example, not able to learn to
internally calculate additional metrics, such as the average across
the visualized data points, unless there is a built-in control for that
in the GUI. We further believe that with additional future work
our insights can be adapted to domains in which systems possess
clear pre-defined functionalities and the state of the system can
be translated into structured data. These insights might then be
applied to augment existing ITL-based systems, such as VoiceCuts
integrated into Photoshop [17].

7 LIMITATIONS AND FUTUREWORK
NL Inputs with Multiple Meanings.
ONYX cannot distinguish between multiple meanings of the same
NL input based on the situational context. For example, the NL
input Remove states was used by users in the formative study
both (i) to remove states from the x-Axis and (ii) to remove the filter
associated with states. Therefore, the situational context, such as
current configuration, previous interactions, or time and location of
users, would be informative and relevant for ONYX to distinguish
between similar NL inputs with varying meanings in different
situational contexts. An important focus of our future work is to
enable users to clarify the aspects of the situational context that
lead to different meanings of similar NL inputs and to enable ONYX
to learn from these clarifications.

Recognition of Important Words, Synonyms, and Antonyms.
The current NL Parser enables ONYX to distinguish between NL
inputs based on task-related keywords, the parameters, and the
sentence structure. However,ONYX has no semantic understanding
of important words contained in the NL input. For example, when
ONYX learns how to interpret Only show Florida , it does not
learn what the specific word Only means. Furthermore, the NL
Parser is not able to identify synonyms and antonyms. To address
these shortcomings, we plan to integrate post-processing of the
learned NL inputs utilizing TF-IDF and the dependency structure
to identify important words and their connection with parameters
and parts of the scripts. This could then be utilized to inform ad-
ditional suggestions provided by ONYX to assist users during the
demonstration process. Furthermore, we plan to utilize open source
knowledge provided by ontologies (e.g., WordNet, VerbNet) to in-
form this post-processing and to enableONYX to process synonyms
and antonyms.

Cold-Start Problem.
Lastly, ONYX initially only knew how to handle a limited set of
NL inputs without additional training and was therefore only able
to support users with suggestions based on a limited set of user-
defined procedures. To address this issue, we plan to integrate our

ONYX: Assisting Users in Teaching Natural Language Interfaces Through
Multi-Modal Interactive Task Learning CHI ’23, April 23–28, 2023, Hamburg, Germany

ITL approach with existing NL toolkits for creating data visualiza-
tions (e.g., NL4DV [33], which is grammar-based, or ncNet [26],
which is machine learning-based) by extracting existing knowl-
edge from these NL toolkits and providing this knowledge through
ONYX to users throughout the demonstration process. Through
this approach, the ITL capabilities of ONYX would not be an alter-
native, but an extension to the existing advances in NL processing,
such as systems similar to GPT-3. This would be beneficial in that
while insights frommachine learning-based NLIs can be more easily
scaled across different situations, existing NLIs based on machine
learning still require numerous examples to train new tasks and
are a black box to users (e.g., [26]).

8 CONCLUSION
Users are increasingly empowered to personalize natural language
interfaces (NLIs) by teaching how to handle new natural language
(NL) inputs. In this paper, we introduce ONYX which integrates a
multi-modal interactive task learning (ITL) approach that assists
users during the demonstration process to improve the accuracy of
the learned script. Specifically, ONYX assists users through sugges-
tions based on parts of the NL input ONYX understood, follow-up
questions to address ambiguities in direct manipulation demonstra-
tions, and guidance through visual and textual aids. The results of
our user studies show that the proposed ONYX features help users
significantly improve the accuracy of the learned script for the NL
input without requiring more time. Furthermore, participants ap-
preciated how these features are integrated into ONYX and how we
addressed the features’ trade-offs. More broadly, our work demon-
strates how users can be assisted during the demonstration process
by an ITL agent to create a synergetic experience in personalizing
an NLI in a multi-modal system.

REFERENCES
[1] 2019. Create commands to control online services and devices. https://support.

google.com/googlenest/answer/7194656
[2] 2022. Shortcuts and Suggestions - Siri - Human Interface Guidelines - Apple

Developer. https://developer.apple.com/design/human-interface-guidelines/
siri/overview/shortcuts-and-suggestions/

[3] James Allen, Nathanael Chambers, George Ferguson, Lucian Galescu, Hyuckchul
Jung, Mary Swift, and William Taysom. 2007. PLOW: A collaborative task
learning agent. In Proceedings of the National Conference on Artificial Intelligence,
Vol. 2. AAAI Press, 1514–1519. https://doi.org/10.5555/1619797.1619888

[4] Zahra Ashktorab, Mohit Jain, Q. Vera Liao, and Justin D. Weisz. 2019. Resilient
chatbots: Repair strategy preferences for conversational breakdowns. In Proceed-
ings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM,
New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300484

[5] Amos Azaria, Shashank Srivastava, Jayant Krishnamurthy, Igor Labutov, and
Tom M. Mitchell. 2020. An agent for learning new natural language commands.
Autonomous Agents and Multi-Agent Systems 34, 1 (4 2020), 6. https://doi.org/10.
1007/s10458-019-09425-x

[6] Tracey Booth and Simone Stumpf. 2013. End-user experiences of visual and
textual programming environments for Arduino. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), Vol. 7897 LNCS. 25–39. https://doi.org/10.1007/978-3-642-
38706-7{_}4

[7] M. Bostock, V. Ogievetsky, and J. Heer. 2011. D3 Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics 17, 12 (12 2011), 2301–2309.
https://doi.org/10.1109/TVCG.2011.185

[8] Julia Cambre, Alex C. Williams, Afsaneh Razi, Ian Bicking, Abraham Wallin,
Janice Tsai, Chinmay Kulkarni, and Jofish Kaye. 2021. Firefox Voice: An Open
and Extensible Voice Assistant Built Upon the Web. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. ACM, New York, NY,
USA, 1–18. https://doi.org/10.1145/3411764.3445409

[9] Xin Chen, Jessica Zeitz Self, Leanna House, John Wenskovitch, Maoyuan Sun,
Nathan Wycoff, Jane Robertson Evia, Scotland Leman, and Chris North. 2018. Be

the Data: Embodied Visual Analytics. IEEE Transactions on Learning Technologies
11, 1 (2018), 81–95. https://doi.org/10.1109/TLT.2017.2757481

[10] Ensheng Dong, Hongru Du, and Lauren Gardner. 2020. An interactive web-based
dashboard to track COVID-19 in real time. The Lancet Infectious Diseases 20, 5 (5
2020), 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1

[11] James R. Eagan and John T. Stasko. 2008. The Buzz: Supporting user tailorability
in awareness applications. Conference on Human Factors in Computing Systems -
Proceedings (2008), 1729–1738. https://doi.org/10.1145/1357054.1357324

[12] Michael H Fischer, Giovanni Campagna, Euirim Choi, and Monica S Lam. 2021.
DIY assistant: A multi-modal end-user programmable virtual assistant. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). ACM, 312–327. https://doi.org/10.1145/3453483.3454046

[13] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie Karahalios.
2015. Datatone: Managing ambiguity in natural language interfaces for data
visualization. In Proceedings of the 28th Annual ACM Symposium on User Interface
Software and Technology. ACM Press, New York, New York, USA, 489–500. https:
//doi.org/10.1145/2807442.2807478

[14] Jonathan Grudin and Richard Jacques. 2019. Chatbots, Humbots, and the Quest
for Artificial General Intelligence. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, Vol. 11. ACM, New York, NY, USA, 1–11.
https://doi.org/10.1145/3290605.3300439

[15] Piedade João, Dorotea Nuno, Sampaio Ferrentini Fábio, and Pedro Ana. 2019.
A cross-analysis of block-based and visual programming apps with computer
science student-teachers. Education Sciences 9, 3 (2019). https://doi.org/10.3390/
educsci9030181

[16] Young-Ho Kim, Bongshin Lee, Arjun Srinivasan, and Eun Kyoung Choe. 2021.
Data@Hand: Fostering Visual Exploration of Personal Data on Smartphones
Leveraging Speech and Touch Interaction. In Proceedings of the 2021 CHI Confer-
ence on Human Factors in Computing Systems. ACM, New York, NY, USA, 1–17.
https://doi.org/10.1145/3411764.3445421

[17] Yea-Seul Kim, Mira Dontcheva, Eytan Adar, and Jessica Hullman. 2019. Vocal
Shortcuts for Creative Experts. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, Vol. 14. ACM, New York, NY, USA, 1–14.
https://doi.org/10.1145/3290605.3300562

[18] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An
exploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transactions on Software Engineering
32, 12 (12 2006), 971–987. https://doi.org/10.1109/TSE.2006.116

[19] Rebecca Krosnick and Steve Oney. 2022. ParamMacros : Creating UI Automation
Leveraging End-User Natural Language Parameterization. In 2022 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC).

[20] John E Laird, Kevin Gluck, John Anderson, Kenneth D Forbus, Odest Chadwicke
Jenkins, Christian Lebiere, Dario Salvucci, Matthias Scheutz, Andrea Thomaz,
Greg Trafton, Robert E Wray, Shiwali Mohan, and James R Kirk. 2017. Interactive
Task Learning. IEEE Intelligent Systems 32, 4 (2017), 6–21. https://doi.org/10.
1109/MIS.2017.3121552

[21] Gilly Leshed, Eben M Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter.
In Proceeding of the 26th annual CHI conference on Human factors in computing
systems - CHI ’08. ACM Press, New York, New York, USA, 1719. https://doi.org/
10.1145/1357054.1357323

[22] Chi-Hsun Li, Su-Fang Yeh, Tang-Jie Chang, Meng-Hsuan Tsai, Ken Chen, and
Yung-Ju Chang. 2020. A Conversation Analysis of Non-Progress and Coping
Strategies with a Banking Task-Oriented Chatbot. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems. ACM, New York, NY, USA,
1–12. https://doi.org/10.1145/3313831.3376209

[23] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems, Vol. 2017-May.
ACM, New York, NY, USA, 6038–6049. https://doi.org/10.1145/3025453.3025483

[24] Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xiaoyi Zhang, Wenze Shi, Wan-
ling Ding, Tom M. Mitchell, and Brad A. Myers. 2018. APPINITE: A Multi-Modal
Interface for Specifying Data Descriptions in Programming by Demonstration
Using Natural Language Instructions. In 2018 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC), Vol. 2018-Octob. IEEE, 105–114.
https://doi.org/10.1109/VLHCC.2018.8506506

[25] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, TomM. Mitchell,
and Brad A. Myers. 2019. PUMICE: A Multi-Modal Agent that Learns Concepts
and Conditionals from Natural Language and Demonstrations. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology.
ACM, New York, NY, USA, 577–589. https://doi.org/10.1145/3332165.3347899

[26] Yuyu Luo, Nan Tang, Guoliang Li, Jiawei Tang, Chengliang Chai, and Xuedi
Qin. 2022. Natural Language to Visualization by Neural Machine Translation.
IEEE Transactions on Visualization and Computer Graphics 28, 1 (1 2022), 217–226.
https://doi.org/10.1109/TVCG.2021.3114848

[27] Rodrigo De A. Maués and Simone Diniz Junqueira Barbosa. 2013. Keep doing
what I just did: Automating smartphones by demonstration. MobileHCI 2013 -
Proceedings of the 15th International Conference on Human-Computer Interaction
with Mobile Devices and Services (2013), 295–303. https://doi.org/10.1145/2493190.
2493216

https://support.google.com/googlenest/answer/7194656
https://support.google.com/googlenest/answer/7194656
https://developer.apple.com/design/human-interface-guidelines/siri/overview/shortcuts-and-suggestions/
https://developer.apple.com/design/human-interface-guidelines/siri/overview/shortcuts-and-suggestions/
https://doi.org/10.5555/1619797.1619888
https://doi.org/10.1145/3290605.3300484
https://doi.org/10.1007/s10458-019-09425-x
https://doi.org/10.1007/s10458-019-09425-x
https://doi.org/10.1007/978-3-642-38706-7{_}4
https://doi.org/10.1007/978-3-642-38706-7{_}4
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1145/3411764.3445409
https://doi.org/10.1109/TLT.2017.2757481
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1145/1357054.1357324
https://doi.org/10.1145/3453483.3454046
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1145/3290605.3300439
https://doi.org/10.3390/educsci9030181
https://doi.org/10.3390/educsci9030181
https://doi.org/10.1145/3411764.3445421
https://doi.org/10.1145/3290605.3300562
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1109/MIS.2017.3121552
https://doi.org/10.1109/MIS.2017.3121552
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/3313831.3376209
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1109/VLHCC.2018.8506506
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1109/TVCG.2021.3114848
https://doi.org/10.1145/2493190.2493216
https://doi.org/10.1145/2493190.2493216

CHI ’23, April 23–28, 2023, Hamburg, Germany Ruoff et al.

[28] Microsoft. 2022. Teach Q&A to understand questions and terms in Power BI
Q&A - Power BI | Microsoft Docs. https://docs.microsoft.com/en-us/power-
bi/natural-language/q-and-a-tooling-teach-q-and-a

[29] Brad A. Myers, Amy J. Ko, Thomas D. LaToza, and Youngseok Yoon. 2016. Pro-
grammers Are Users Too: Human-CenteredMethods for Improving Programming
Tools. Computer 49, 7 (7 2016), 44–52. https://doi.org/10.1109/MC.2016.200

[30] Brad A. Myers, Andrew J. Ko, Chris Scaffidi, Stephen Oney, Young Seok Yoon,
Kerry Chang, Mary Beth Kery, and Toby Jia Jun Li. 2017. Making end user
development more natural. In New Perspectives in End-User Development. 1–22.
https://doi.org/10.1007/978-3-319-60291-2{_}1

[31] Brad A Myers, Richard G. McDaniel, and David S Kosbie. 1993. Marquise. In
Proceedings of the SIGCHI conference on Human factors in computing systems -
CHI ’93. ACM Press, New York, New York, USA, 293–300. https://doi.org/10.
1145/169059.169225

[32] Arpit Narechania, Adam Fourney, Bongshin Lee, and Gonzalo Ramos. 2021.
DIY: Assessing the Correctness of Natural Language to SQL Systems. In 26th
International Conference on Intelligent User Interfaces. ACM, New York, NY, USA,
597–607. https://doi.org/10.1145/3397481.3450667

[33] Arpit Narechania, Arjun Srinivasan, and John Stasko. 2021. NL4DV: A Toolkit for
Generating Analytic Specifications for Data Visualization from Natural Language
Queries. IEEE Transactions on Visualization and Computer Graphics 27, 2 (2 2021),
369–379. https://doi.org/10.1109/TVCG.2020.3030378

[34] Şaziye Betül Özateş, Arzucan Özgür, and Gomir R. Draradev. 2016. Sentence
similarity based on dependency tree kernels for multi-document summarization.
In Proceedings of the 10th International Conference on Language Resources and
Evaluation, LREC 2016. 2833–2838. http://duc.nist.gov/duc2003/tasks.html

[35] Lihang Pan, Chun Yu, JiaHui Li, Tian Huang, Xiaojun Bi, and Yuanchun Shi.
2022. Automatically Generating and Improving Voice Command Interface from
Operation Sequences on Smartphones. In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems. ACM, New York, NY, USA, 1–21. https:
//doi.org/10.1145/3491102.3517459

[36] Alborz Rezazadeh Sereshkeh, Gary Leung, Krish Perumal, Caleb Phillips, Minfan
Zhang, Afsaneh Fazly, and Iqbal Mohomed. 2020. VASTA. In Proceedings of the
25th International Conference on Intelligent User Interfaces, Vol. 20. ACM, New
York, NY, USA, 22–32. https://doi.org/10.1145/3377325.3377515

[37] Vidya Setlur, Sarah E. Battersby, Melanie Tory, Rich Gossweiler, and Angel X.
Chang. 2016. Eviza: A natural language interface for visual analysis. In Proceedings
of the 29th Annual Symposium on User Interface Software and Technology (UIST ’16).

ACM, New York, NY, USA, 365–377. https://doi.org/10.1145/2984511.2984588
[38] Arjun Srinivasan, Bongshin Lee, Nathalie Henry Riche, Steven M. Drucker, and

Ken Hinckley. 2020. InChorus: Designing Consistent Multimodal Interactions for
Data Visualization on Tablet Devices. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. ACM, New York, NY, USA, 1–13. https:
//doi.org/10.1145/3313831.3376782

[39] Arjun Srinivasan, Nikhila Nyapathy, Bongshin Lee, Steven M. Drucker, and John
Stasko. 2021. Collecting and Characterizing Natural Language Utterances for
Specifying Data Visualizations. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. ACM, New York, NY, USA, 1–10. https:
//doi.org/10.1145/3411764.3445400

[40] Gavin Suddrey, Ben Talbot, and Frederic Maire. 2022. Learning and Executing
Re-Usable Behaviour Trees From Natural Language Instruction. IEEE Robotics
and Automation Letters 7, 4 (10 2022), 10643–10650. https://doi.org/10.1109/LRA.
2022.3194681

[41] Tableau. 2019. Optimize Data for Ask Data - Tableau. https://help.tableau.com/
current/pro/desktop/en-us/askdataoptimize.htm

[42] Jesse Thomason, Shiqi Zhang, Raymond Mooney, and Peter Stone. 2015. Learning
to interpret natural language commands through human-robot dialog. IJCAI
International Joint Conference on Artificial Intelligence 2015-Janua, Ijcai (2015),
1923–1929.

[43] Melanie Tory and Vidya Setlur. 2019. Do What I Mean, Not What I Say! Design
Considerations for Supporting Intent and Context in Analytical Conversation. In
2019 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE,
93–103. https://doi.org/10.1109/VAST47406.2019.8986918

[44] Priyan Vaithilingam and Philip J. Guo. 2019. Bespoke: Interactively synthesizing
custom GUIs from command-line applications by demonstration. In UIST 2019 -
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology. 563–576. https://doi.org/10.1145/3332165.3347944

[45] Sida I. Wang, Samuel Ginn, Percy Liang, and Christopher D. Manning. 2017.
Naturalizing a Programming Language via Interactive Learning. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics, Vol. 1.
Association for Computational Linguistics, Stroudsburg, PA, USA, 929–938. https:
//doi.org/10.18653/v1/P17-1086

[46] Jonathan Zong, Dhiraj Barnwal, Rupayan Neogy, and Arvind Satyanarayan.
2021. Lyra 2: Designing Interactive Visualizations by Demonstration. IEEE
Transactions on Visualization and Computer Graphics 27, 2 (2 2021), 304–314.
https://doi.org/10.1109/TVCG.2020.3030367

https://docs.microsoft.com/en-us/power-bi/natural-language/q-and-a-tooling-teach-q-and-a
https://docs.microsoft.com/en-us/power-bi/natural-language/q-and-a-tooling-teach-q-and-a
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1007/978-3-319-60291-2{_}1
https://doi.org/10.1145/169059.169225
https://doi.org/10.1145/169059.169225
https://doi.org/10.1145/3397481.3450667
https://doi.org/10.1109/TVCG.2020.3030378
http://duc.nist.gov/duc2003/tasks.html
https://doi.org/10.1145/3491102.3517459
https://doi.org/10.1145/3491102.3517459
https://doi.org/10.1145/3377325.3377515
https://doi.org/10.1145/2984511.2984588
https://doi.org/10.1145/3313831.3376782
https://doi.org/10.1145/3313831.3376782
https://doi.org/10.1145/3411764.3445400
https://doi.org/10.1145/3411764.3445400
https://doi.org/10.1109/LRA.2022.3194681
https://doi.org/10.1109/LRA.2022.3194681
https://help.tableau.com/current/pro/desktop/en-us/ask data optimize.htm
https://help.tableau.com/current/pro/desktop/en-us/ask data optimize.htm
https://doi.org/10.1109/VAST47406.2019.8986918
https://doi.org/10.1145/3332165.3347944
https://doi.org/10.18653/v1/P17-1086
https://doi.org/10.18653/v1/P17-1086
https://doi.org/10.1109/TVCG.2020.3030367

	Abstract
	1 Introduction
	2 Related Work
	2.1 Learning Tasks through Demonstrations
	2.2 Natural Language Interfaces with Learning Capabilities
	2.3 Natural Language Interfaces for Data Visualization Tools

	3 Formative Study & Design Goals
	3.1 Understanding of the NLI's Existing Knowledge
	3.2 Ambiguous Direct Manipulation Demonstrations
	3.3 Design of Assistance

	4 ONYX
	4.1 Example Scenario
	4.2 Key Design Features
	4.3 System Architecture

	5 Evaluative User Studies
	5.1 Participants
	5.2 Procedure
	5.3 Tasks
	5.4 Results

	6 Discussion
	7 Limitations and Future Work
	8 Conclusion
	References

