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Abstract 

Governments and health organizations increasingly use dashboards to provide real-time information 

during natural disasters and pandemics. Although these dashboards aim to make crisis-related 

information accessible to the general public, the average user can have a hard time interacting with 

them and finding the information needed to make everyday decisions. To address this challenge, we 

draw on the theory of effective use to propose a theory-driven design for conversational dashboards 

in crisis response, which improves users’ transparent interaction and access to crisis-related 

information. We instantiate our proposed design in a conversational dashboard for the COVID-19 

pandemic that enables natural language interaction in spoken or written form and helps users 

familiarize themselves with the use of natural language through conversational onboarding. The 

evaluation of our artifact shows that being able to use natural language improves users’ interaction 

with the dashboard and ultimately increases their efficiency and effectiveness in finding information. 

This positive effect is amplified when users complete the onboarding before interacting with the 

dashboard, particularly when they can use both natural language and mouse. Our findings contribute 

to research on dashboard design, both in general and in the specific context of crisis response, by 

providing prescriptive knowledge for extending crisis response dashboards with natural language 

interaction capabilities. In addition, our work contributes to the democratization of data science by 

proposing design guidelines for making information in crisis response dashboards more accessible 

to the general public. 

Keywords: Dashboard, Conversational User Interface, Crisis Response, Design Science Research, 

Theory of Effective Use. 

[Senior editor name] was the accepting senior editor. This research article was submitted on [manuscript submission 

date] and went through [number of revisions] revisions.  

1 Introduction 

Crises are by nature unpredictable, sudden, and often 

chaotic situations. When a crisis occurs, people want 

to find accurate and up-to-date information quickly so 

that they can make the best decisions for themselves, 

their families, and their communities (Leong et al., 

2015). To satisfy information needs, governments and 

health organizations increasingly rely on crisis 

response dashboards. Similar to business intelligence 

(BI) dashboards designed to support decision makers 

in organizations (Abbasi et al., 2016), crisis response 

dashboards are designed to provide citizens with key 

information about the current state of a crisis. As such, 

these data science artifacts primarily aim to 

democratize data science by making complex data 

accessible to the general public (Koch, 2021; Matheus 
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et al., 2020). While crisis response dashboards had 

been developed earlier for earthquakes (Zook et al., 

2010), wildfires (Liu & Palen, 2010), and virus 

outbreaks (Cheng et al., 2011), they took center stage 

during the COVID-19 pandemic (Pietz et al., 2020). 

For example, the dashboard provided by Johns 

Hopkins University received more than a billion hits 

per day during the height of the pandemic (Gardner et 

al., 2021). COVID-19 dashboards not only became a 

primary source of information about cases, deaths, and 

other key metrics for the general public, but were also 

frequently used to guide everyday decision making 

(e.g., about visiting a friend or getting a haircut) 

(Flowers, 2020). 

Both researchers and practitioners seem to share the 

assumption that COVID-19 dashboards were highly 

effective in helping billions of users to find the 

information they needed quickly, as long as the 

underlying data was accurate and the visualizations 

were interactive (Patino, 2021; Soper et al., 2021). 

However, while the reported numbers of daily 

dashboard users certainly look impressive, we know 

from the literature that people must use information 

systems (IS) effectively—rather than just using 

them—to achieve their goals (Burton-Jones & Grange, 

2013). The fundamental dimension of effective use is 

transparent interaction, which describes how well 

users can access information from an IS unimpeded by 

its physical and surface structures (e.g., the user 

interface) (Burton-Jones & Grange, 2013). If users are 

unable to interact with a dashboard transparently, they 

are unlikely to find the information they need and make 

good decisions (e.g., about wearing a mask in regions 

with increasing case numbers). 

Against this backdrop, it is important to highlight that 

achieving transparent interaction with dashboards in 

general, and crisis response dashboards in particular, 

can be more difficult than expected, especially for 

users who are not familiar with the technology and/or 

have limited domain knowledge. These users often 

struggle to find their way around the dashboard’s 

interface, deal with its complexity, and obtain the 

information they are interested in (Young et al., 2021; 

Young & Kitchin, 2020). Additionally, anecdotal 

evidence from a review of 52 state-level COVID-19 

dashboards in the United States shows that many of 

them “were overly complex to navigate, and even 

experienced health researchers had difficulty finding 

key information” (Prevent Epidemics, 2020, p. 17). 

These findings suggest that users could face 

difficulties in interacting with a dashboard 

transparently, so that finding the information they need 

quickly might not be as easy as designers intend. 

Given that crisis response dashboards, such as the ones 

developed for the COVID-19 pandemic, are designed 

to inform the general public, it is imperative that they 

enable a wide range of users—regardless of their 

socio-demographic backgrounds and technical 

expertise—to achieve transparent interaction. A 

promising way to address this challenge is to move 

beyond the traditional graphical user interface (GUI) 

and provide users with a more natural way of 

interacting with a dashboard using natural language. 

With recent technological advances in artificial 

intelligence (AI), natural language could make 

navigating the dashboard and finding information less 

difficult because it allows users to articulate their 

information needs more naturally, as they would in 

everyday conversation (Lee et al., 2020). However, 

despite the technological advances, we know little 

about how to design a crisis response dashboard with 

natural language interaction capabilities (hereafter 

referred to as a conversational dashboard) and 

whether natural language actually enables users to 

interact with the dashboard more transparently. 

Therefore, we seek to answer the following research 

question: 

RQ: How can crisis response dashboards be extended 

with natural language interaction capabilities to 

improve users’ transparent interaction and access 

to crisis-related information? 

To address this question, we follow the design science 

research (DSR) approach (Hevner et al., 2004). 

Drawing on Burton-Jones & Grange’s ( 2013) theory 

of effective use (TEU), we propose a theory-driven 

design for conversational dashboards in crisis response 

and instantiate our proposed design in a novel data 

science artifact: a conversational dashboard for the 

COVID-19 pandemic that enables natural language 

interaction in spoken or written form and helps users 

familiarize themselves with the use of natural language 

through conversational onboarding. The evaluation of 

our artifact shows that the ability to use natural 

language improves users’ transparent interaction with 

the dashboard and ultimately increases their efficiency 

and effectiveness in finding the information they need. 

These findings suggest that our artifact contributes to 

the democratization of data science in the context of 

crisis response by making the information dashboards 

provide more accessible to broader audiences, thereby 

narrowing the gap between data and insights. Our work 

also contributes to research on dashboard design and 

use, both in general and in the specific context of crisis 

response, by providing prescriptive knowledge for 

extending dashboards with natural language 

interaction capabilities. In addition, our findings shed 

light on potential design trade-offs when users are 

provided with multiple ways to interact with a 

dashboard, and suggest an approach for addressing 

these trade-offs using conversational onboarding. With 

our findings, we provide actionable guidance to data 

scientists and dashboard providers on how to design 

crisis response dashboards that are more accessible to 

broader audiences. 
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2 Theoretical Foundations and 

Related Work 

Our work is situated at the intersection of two research 

streams: conversational user interfaces (CUIs) and 

dashboards. Here, we first provide an overview of 

related work in these streams from both an IS and a 

human-computer interaction (HCI) perspective. Next, 

we describe existing research at the intersection of 

CUIs and dashboards (i.e., on conversational 

dashboards), which has emerged as a prominent 

research area in the HCI field. Finally, we introduce 

our kernel theory (i.e., TEU) and explain its key 

constructs. 

2.1 Conversational User Interfaces 

Conversational user interfaces (CUIs) enable people to 

interact with IS using spoken or written language in a 

natural way. The term conversational specifically 

emphasizes that these interfaces support the use of 

spontaneous natural language, in contrast to earlier 

applications (e.g., interactive voice response systems) 

that required a more restricted form of user input (e.g., 

“Press or Say 1 for English”) (McTear et al., 2016). In 

recent years, CUIs in the form of chatbots and 

conversational agents have received considerable 

interest from IS researchers (Diederich et al., 2022). A 

key focus of this research has been to empirically 

investigate how the human-like design of CUIs 

influences user perceptions and behaviors (e.g., 

Gnewuch et al., 2022; Schanke et al., 2021; Seeger et 

al., 2021). Further, prior IS studies have focused on 

designing CUIs for specific contexts, such as for 

border screening (Nunamaker et al., 2011), in job 

interviews (Diederich et al., 2020), or in mental health 

care (Ahmad et al., 2022). 

Additionally, the HCI field has a long tradition of 

investigating CUI design, dating back to the 1960s 

when the first chatbot, ELIZA, was developed 

(Weizenbaum, 1966). A key focus in this research 

stream is to examine users’ expectations of and 

interactions with CUIs in real-life settings in order to 

identify design challenges (e.g., Luger & Sellen, 2016; 

Porcheron et al., 2018). For example, Luger and Sellen 

(2016) found that users often do not understand the 

limitations of CUIs and therefore need to be given 

feedback about the actual capabilities. A related line of 

research seeks to address the challenges related to 

ambiguity and complexity in natural language 

interaction. For example, existing studies have 

suggested design principles for handling 

conversational breakdowns (Ashktorab et al., 2019; 

Ruoff et al., 2022) and for providing conversational 

context to help users interact with CUIs (Jain et al., 

2018). Another, more technical set of studies in this 

stream focuses on the development of new system 

architectures and the application of advanced machine 

learning techniques to improve the technical 

components underlying a CUI (e.g., Huang et al., 

2018; Xu et al., 2017). Finally, a growing number of 

studies investigate the design of CUIs for specific 

contexts (e.g., virtual team collaboration; Benke et al., 

2020) and specific target groups (e.g., children; Zhang 

et al., 2022). 

A great deal of research in both IS and HCI has 

regarded CUIs as an alternative to graphical user 

interfaces (GUIs). Several tech companies have even 

claimed that it is only a matter of time before CUIs 

replace apps and websites equipped with GUIs 

(McTear et al., 2016). However, it is difficult to convey 

the amount of visual information rich GUIs provide, as 

with data visualization in a dashboard, using natural 

language. This suggests that more could be achieved 

by complementing rather than replacing a GUI with a 

CUI. Against this backdrop, we next introduce related 

work on dashboards that typically feature rich GUIs, 

and subsequently present prior research on 

conversational dashboards that aim to combine both 

types of user interface. 

2.2 Dashboards 

Dashboards are “visual displays of the most important 

information needed to achieve one or more objectives; 

consolidated and organized on a single screen so the 

information can be monitored at a glance” (Few, 

2006). Many organizations use BI dashboards to 

provide decision makers with a comprehensive 

overview of key performance indicators, thereby 

supporting their decision making (Abbasi et al., 2016; 

Chen et al., 2012). Against this backdrop, most IS 

studies focus on dashboards designed for domain 

experts in organizations. Examples include business 

users in areas such as supply chain management (Park 

et al., 2016) and health professionals such as 

physicians (Chen et al., 2016). While the specific 

contexts and dashboard designs may differ, these target 

users have in common that they are familiar with the 

application domain, which helps them understand the 

data underlying the dashboard, and that they are likely 

to use the dashboard on a regular basis as part of their 

job. In contrast, very little IS research has been devoted 

to dashboards designed for broader audiences outside 

of organizational structures who might be less familiar 

with dashboard technology. Thus, existing dashboard 

designs rarely include additional integrated learning 

features besides help buttons (e.g., Nadj et al., 2020; 

Nguyen et al., 2021) or tooltips (e.g., Vallurupalli & 

Bose, 2018), which would particularly benefit such 

audiences. Recker's (2021) study is the only one that 

focuses on the general public as target users of a 

dashboard, and it is also one of the few IS studies that 

investigate dashboards in the context of crisis 

response. Overall, this dearth of research is surprising 

given the increasing pervasiveness of dashboards 
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designed for broader audiences, particularly in the 

crisis response context (Koch, 2021; Matheus et al., 

2020). 

Further, existing dashboards found in the IS literature 

almost exclusively rely on GUIs to display data 

visualizations, ranging from simple line charts (e.g., 

Nguyen et al., 2021) to more complex network graphs 

(e.g., Lu et al., 2021). These dashboards typically 

provide additional features, such as filters and drill-

downs, to enable users to interact with visualizations 

and navigate the GUI. While GUIs are well suited to 

display complex data visualizations, research suggests 

that users who are not familiar with dashboards and 

have limited domain knowledge can struggle to 

interact with them (Young et al., 2021). Therefore, 

other types of user interfaces (e.g., CUIs) might be 

more suitable for less tech-savvy audiences (Lee et al., 

2020). However, so far no IS study has investigated a 

dashboard with a CUI. 

2.3 Conversational Dashboards 

In contrast to the IS literature that has focused on 

investigating dashboards equipped with traditional 

GUIs, HCI research has considered CUIs as a 

promising extension to make dashboards more 

accessible (Lee et al., 2020). A key focus of this 

research is to provide and improve the technical 

foundations that enable natural language interaction 

with data visualizations in a conversational dashboard. 

For example, several studies address the challenges of 

ambiguity in natural language by proposing design 

features for disambiguating unclear user input (e.g., 

Gao et al., 2015; Setlur et al., 2016). In addition, an 

emerging body of work explores how users interact 

with conversational dashboards using speech, touch, 

and keyboard (e.g., Ruoff & Gnewuch, 2021; 

Saktheeswaran et al., 2020). 

However, similar to IS research, the majority of HCI 

studies has focused on dashboards designed for 

domain experts and tech-savvy groups of users (e.g., 

data analysts or computer science students; Gao et al., 

2015; Setlur et al., 2016). The only study that 

specifically targets the general public is one that 

developed a smartphone app for exploring personal 

health data captured by a Fitbit tracker (Kim et al., 

2021). Further, prior HCI research has predominantly 

focused on assessing the practical viability of 

conversational dashboards using relatively small 

samples (Srinivasan et al., 2020) rather than 

conducting rigorous evaluations of the underlying 

design principles. For example, Setlur et al. (2016) 

compared their conversational dashboard to a 

traditional dashboard without CUI in a user study with 

twelve domain experts from a software company.  

Based on our review of the IS and HCI literature, we 

made three major observations about the current state 

of research on dashboard design. First, as the literature 

has primarily focused on dashboards designed for 

domain experts within organizational settings (e.g., 

managers, physicians) or for tech-savvy user groups 

(e.g., data analysts), research on the design of crisis 

response dashboards for broader audiences is scarce. 

This gap in the literature needs attention because 

previous studies indicate that novice and less tech-

savvy users particularly can find interacting with a 

dashboard difficult (Young et al., 2021; Young & 

Kitchin, 2020), suggesting that a different dashboard 

design is needed to accommodate broader audiences. 

Second, although HCI research identified CUIs as a 

promising way of making dashboards more accessible, 

existing designs of conversational dashboards have not 

been derived from a solid theoretical foundation and 

are often not rigorously evaluated to ensure their 

utility. As a result, a theory-driven design for 

conversational dashboards, particularly for the crisis 

response context, is lacking. Finally, while research on 

the development of advanced dashboard features (e.g., 

new visualizations, better analytical capabilities) has 

prospered, much less has been advanced on integrated 

learning features that would particularly benefit the 

average user who is less familiar with dashboards and 

how to use natural language to interact with them. This 

is another critical research gap since users of crisis 

response dashboards might not have received any 

dedicated training, and do not have an IT department 

for assistance. Our work addresses these gaps in the 

literature by proposing, instantiating, and rigorously 

evaluating a theory-driven design for conversational 

dashboards in crisis response that improves users’ 

interaction and access to crisis-related information. 

2.4 Theory of Effective Use 

Drawing on representation theory, Burton-Jones and 

Grange (2013) proposed TEU based on the premise 

that rather than just being used, IS must be used 

effectively to obtain maximum benefits from them. 

They defined effective use as “using a system in a way 

that helps attain the goals for using the system” (p. 633) 

and conceptualized it as an aggregate construct with 

three hierarchical dimensions: (1) transparent 

interaction, (2) representational fidelity, and (3) 

informed action. This paper focuses on the first 

dimension of effective use—transparent interaction. 

According to Burton-Jones and Grange (2013), each 

lower-level dimension is necessary but not sufficient 

for the higher-level dimension. Therefore, when users 

are unable to interact with an IS transparently 

(transparent interaction), their chances of obtaining 

faithful representations (representational fidelity) and 

eventually acting upon these representations in an 

informed way (informed action) are dramatically 

reduced, if not eliminated. Transparent interaction is 

formally defined as “the extent to which a user is 

accessing the system’s representations unimpeded by 
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its surface [e.g., user interface] and physical structure 

[e.g., computer, input/output devices]” (p. 642). For 

example, the surface structure of a traditional 

dashboard is a GUI, which typically consists of menus, 

sliders, and additional interactive features that can be 

used to navigate the GUI and change the data 

visualizations. 

TEU also identifies two major factors that act as 

drivers of effective use: adaptation and learning 

(Burton-Jones & Grange, 2013). Adaptations are 

users’ actions to improve the representations in a 

system or the way they can be accessed (e.g., through 

the surface structure). Learning involves users’ actions 

to learn the system’s components (e.g., 

representations, surface structure), the fidelity of its 

representations, and how to leverage representations 

toward taking more informed action. Given our 

emphasis on transparent interaction, we focus on two 

specific adaptation and learning actions that can 

increase users’ ability to interact with a system 

transparently, namely adapting surface structure and 

learning surface structure. Typically, users can engage 

in adapting a system’s surface structure by 

personalizing the user interface themselves or by 

suggesting improvements to system designers who 

then adapt the interface for them (Barki et al., 2007). In 

addition, organizations that introduce new IS usually 

offer training sessions and provide system manuals to 

facilitate users’ learning of the system’s surface 

structure (Lauterbach et al., 2020). However, in the 

context of crisis response dashboards, such strategies 

would be difficult to implement because these 

dashboards are often used in an ad-hoc manner and, 

unlike in an organization, there is no clearly defined 

group of users. Consequently, TEU as a kernel theory 

provides convincing theoretical arguments on why 

adaptation and learning should improve transparent 

interaction, but it does not offer prescriptive guidance 

on what should be done through design to address 

users’ lack of transparent interaction, nor on how to 

achieve this. Therefore, design knowledge on how to 

adapt the surface structure of a crisis response 

dashboard and facilitate users’ learning to improve 

transparent interaction is scarce. 

3 Designing Conversational 

Dashboards for Crisis Response 

Our research project follows the DSR approach 

(Hevner et al., 2004) to design a conversational 

dashboard for crisis response that improves users’ 

transparent interaction and access to crisis-related 

information. The DSR approach is well-suited to guide 

our research as it aims to generate design knowledge 

through innovative solutions for real-world problems 

(Hevner et al., 2004). In this section, we first describe 

our design process and then elaborate on the design 

outcomes, that is, our meta-requirements (MRs), 

design principles (DPs), and software artifact. 

3.1 Design Process 

We adopted the DSR framework proposed by 

Kuechler and Vaishnavi (2008) and divided our project 

into two iterative build-evaluation cycles. Here, we 

briefly summarize our activities in each cycle. As 

illustrated in Figure 1, the work presented in this paper 

primarily focuses on the outcomes of the second and 

final design cycle.

 
Figure 1. Overview of our DSR approach 

We started the first cycle by gaining an in-depth 

understanding of the problem space in order to identify 

barriers and design challenges that make it difficult for 

broader audiences to interact with crisis response 

dashboards. In this step, we first conducted a review of 

the IS and HCI literature on the design and use of 

dashboards in several application areas including, but 

not limited to, crisis response. To supplement what we 

found in the literature, we conducted interviews with 

six actual and potential dashboard users (three females, 
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three males) with an average age of 53.2 years (SD = 

23.2) and diverse backgrounds (e.g., seniors, students, 

professionals). Our goal was not to obtain as 

representative a sample as possible, but rather to invite 

less tech-savvy participants who do not use dashboards 

on a regular basis. In the interviews, we encouraged 

them to interact with the COVID-19 dashboard by 

Johns Hopkins University (Dong et al., 2020) and then 

asked them about the challenges they faced during the 

interaction. The findings from the interviews and the 

literature review revealed that transparent interaction 

with a dashboard is particularly important for effective 

use but achieving it can be more difficult than 

expected. Drawing on TEU (Burton-Jones & Grange, 

2013) as our overarching kernel theory, we then 

derived two MRs. Subsequently, we proposed three 

initial DPs for conversational dashboards to address 

these MRs based on the idea that natural language 

interaction can help users achieve higher levels of 

transparent interaction with a dashboard. Finally, we 

instantiated our initial DPs in a first prototype that had 

natural language interaction capabilities but, in 

contrast to our final artifact, did not yet offer 

conversational onboarding. Instead, we implemented 

both a help button and a help message in the chat to 

provide instructions on how to interact with the 

dashboard. We evaluated our prototype with fifteen 

participants (7 females, 8 males) with an average age 

of 43.1 years (SD = 22.7) and different levels of IT 

experience using think-aloud sessions combined with 

interviews. Overall, we found that all participants 

appreciated being able to use natural language to 

interact with the dashboard. Less tech-savvy 

participants reported that it allowed them to directly 

formulate their information needs in natural language 

and navigate the dashboard without dealing with 

interactive features such as sliders or filters. 

Conversely, more tech-savvy participants highlighted 

that using natural language improved their efficiency 

in the interaction and allowed faster access to the 

information in the dashboard. Nonetheless, most 

participants stated that they would prefer natural 

language as an addition to rather than a replacement of 

mouse interaction. Additionally, we found that most 

participants did not use or even recognize the help 

button or help message. Consequently, one of the key 

challenges participants mentioned was their lack of 

familiarity with and confidence in using natural 

language to interact with the conversational dashboard. 

This finding showed that our initial design was unable 

to provide sufficient support for users in learning how 

to interact with the dashboard, thus highlighting the 

need to refine our DPs to better address the MRs in the 

final artifact. Consequently, this reflection served as 

the entry point to the second cycle and eventually led 

to the development of the conversational onboarding. 

The second cycle started with a refinement of the 

initial problem definition, MRs, and DPs. Based on the 

results of the first evaluation, we realized that users 

need a more systematic, “hands-on” approach to learn 

how to use natural language to interact with the 

dashboard. Therefore, we extended our review of 

dashboard studies and specifically analyzed the design 

of integrated learning features in current dashboards. 

Since the results showed that most dashboards rely on 

help buttons and tooltips (similar to our first 

prototype), we took inspiration from research on 

technology-mediated learning that has proposed the 

concept of enactive learning for enhanced learning 

outcomes (Gupta et al., 2010; Gupta & Bostrom, 

2009). Drawing on this concept, we then refined our 

third DP based on the idea of conversational 

onboarding. Subsequently, we developed a fully 

functional version of our artifact that instantiated the 

refined DPs. To rigorously evaluate the DPs, we 

conducted a large-scale online experiment with 271 

participants and measured their level of transparent 

interaction. Finally, we abstracted and synthesized the 

design and evaluation results into a nascent design 

theory for conversational dashboards in crisis 

response. 

3.2 Problem Description and Meta-

Requirements 

Crisis response dashboards, such as the ones developed 

for the COVID-19 pandemic, are designed to give the 

general public access to important information during 

a crisis (Ivanković et al., 2021; Recker, 2021). 

However, our review of the dashboard literature in IS 

and HCI and our interviews with less tech-savvy 

individuals suggest that the average user is likely to 

have a hard time interacting with a crisis response 

dashboard and ultimately finding the information he or 

she needs. For example, one interviewee mentioned 

that she had to “search the dashboard extensively 

before even knowing how to get to the needed 

information”. Another interviewee explained that he 

“did not know what changed in the visualization based 

on [his] interaction”. Viewed through the lens of our 

kernel theory, there often appears to be a lack of 

transparent interaction with crisis response 

dashboards. 

To derive meta-requirements (MRs) for addressing this 

problem, we draw on TEU (Burton-Jones & Grange, 

2013). As outlined in Section 2.4, TEU proposes two 

important factors that can improve transparent 

interaction: adaptation and learning. Given that the 

design problem we address relates to the difficulties in 

interacting with the user interface of crisis response 

dashboards, we specifically focused on TEU’s 

adaptation and learning actions related to surface 

structure. Drawing on these theoretical underpinnings, 

we derive two MRs on how the dashboards’ surface 

structure might be adapted and how learning it could 

be better supported. 



Journal of the Association for Information Systems 

 

7 

 

In line with TEU, adapting the dashboard’s surface 

structure (i.e., its user interface) is one approach to 

improving users’ transparent interaction and ultimately 

their access to information. The surface structure of 

current crisis response dashboards consists of a GUI 

that can primarily be navigated using a mouse, 

keyboard, or touchscreen. Therefore, a promising way 

to adapt the surface structure is to move beyond the 

traditional GUI and provide users with a more natural 

way of interacting with the dashboard, for example, 

using natural language (Lee et al., 2020). Natural 

language could simplify navigating the dashboard 

navigation and so make finding information less 

difficult by allowing users to formulate their 

information needs more naturally, as they would in 

everyday conversation. One interviewee hinted at this 

possibility in wondering “why [he] could not just ask 

the dashboard and talk to it”. Following this line of 

thought, we propose our first MR: 

MR1: The surface structure of a crisis response 

dashboard should be adapted to allow for a more 

natural way of interaction in order to improve 

transparent interaction. 

 A second, complementary approach to improve users’ 

transparent interaction would be to support users in 

learning how to interact with the surface structure of a 

crisis response dashboard (Burton-Jones & Grange, 

2013). In contrast to dashboard users in organizations 

(e.g., managers, health professionals), the average user 

of a crisis response dashboard would possibly not have 

received any dedicated training and not be able to call 

an IT department for assistance. Since current crisis 

response dashboards primarily offer integrated 

learning features in the form of passive help buttons 

and tooltips, a promising way to facilitate users’ 

learning of its surface structure would be to enable the 

dashboard to actively familiarize users with possible 

ways of interaction, particularly when it offers novel 

ways with which users might not be familiar (e.g., 

using natural language). Based on these 

considerations, we propose our second MR: 

MR2: A crisis response dashboard should actively 

support users in independently learning its surface 

structure in order to improve transparent 

interaction. 

3.3 Design Principles 

To address the two identified MRs, we derive three 

DPs by building on existing theory and the current 

body of prescriptive knowledge for dashboards. 

Regarding our first MR, namely adapting the 

dashboard’s surface structure to enable a more natural 

way of interaction, we draw on the concept of 

affordances (Gibson, 1977), which is linked to TEU in 

several ways (Burton-Jones & Volkoff, 2017). 

Affordances are a key concept in the HCI and IS fields 

to describe and understand how users interact with an 

IS, thereby providing a solid theoretical grounding for 

our first and second DPs. 

Affordances are defined as action possibilities that the 

environment provides to an actor (Gibson, 1977). 

According to Burton-Jones and Grange (2013), the 

surface structure of an IS relates particularly to 

physical affordances. Physical affordances are design 

features, such as buttons, that help users to perform a 

physical action in the user interface (Hartson, 2003). 

For example, dashboards offer interactive features, 

such as menus, sliders, and filters, that enable users to 

directly change the data visualizations. However, 

actualizing these physical affordances is difficult for 

some users, for example, because they do not know 

how and when to use the interactive features that 

enable navigating the dashboard. To address this 

challenge and offer users a more natural way of finding 

the information they need, we propose using natural 

language, which is the primary means of 

communication between humans (Knote et al., 2021). 

In contrast to clicking buttons, scrolling, and setting 

filters, natural language can provide a more natural 

way of performing actions in the interface and 

therefore “make affordances easy to actualize” (Knote 

et al., 2021, p. 434). It might also require less effort 

because users could directly use natural language input 

instead of translating their information need into a 

series of actions in the interface (e.g., setting filters). 

While the possibility of having a natural conversation 

with a dashboard might have seemed far-fetched in the 

past, recent technological advances, particularly in the 

area of large generative language models (e.g., GPT-

3), suggest that in the future developers can make this 

scenario a reality with minimal manual effort or 

domain knowledge. Consequently, we propose 

enabling users to seamlessly navigate the dashboard 

using natural language. Thus, based on MR1, we 

formulate our first DP using the schema suggested by 

Gregor et al. (2020): 

DP1: To enable the general public to seamlessly 

navigate a dashboard for crisis response, provide 

users with the ability to use spoken or written 

language in a natural way because articulating an 

information need in natural language is easier than 

translating it into a series of actions in the 

graphical user interface. 

While the first DP postulates that a crisis response 

dashboard should allow natural language interaction, it 

does not specify whether the ability to use natural 

language should complement or replace existing ways 

of interacting with a dashboard (e.g., using a mouse). 

At first glance, it could seem better to restrict users to 

natural language interaction, thereby removing the 

need for them to understand how and when to use 

interactive features, such as menus, sliders, and filters, 

to navigate the dashboard. However, according to TEU 
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(Burton-Jones & Grange, 2013), transparent 

interaction involves not only the system itself (e.g., a 

dashboard) but also the user and task. This clarification 

is particularly important for crisis response dashboards 

because they need to accommodate a wide range of 

users, ranging from novices who have never seen a 

dashboard before to tech-savvy groups of individuals 

(Ivanković et al., 2021). Therefore, different users 

could prefer different ways of interaction to achieve 

the same goal; then, restricting them to only natural 

language could backfire. Additionally, characteristics 

of the task at hand, such as its complexity, can also 

influence the suitability of using natural language or 

the mouse for a particular task. Considering this, we 

argue that users should be able to use both natural 

language and mouse, and need the freedom to choose 

between them in their interaction with the dashboard. 

Thus, based on MR1, we formulate our second DP: 

DP2: To enable the general public to seamlessly 

navigate a dashboard for crisis response, provide 

users with the ability to choose between natural 

language and mouse because it gives them 

flexibility for the task at hand and takes their 

individual preferences into account. 

Our second MR focuses on supporting users in 

independently learning the surface structure of a crisis 

response dashboard. To formulate our third DP based 

on MR2, we draw on the concept of enactive learning 

(Gupta & Bostrom, 2009). Enactive learning has 

proven to be a feasible approach for web-based 

training and therefore provides a good theoretical 

foundation for addressing MR2, particularly because 

formal training approaches are difficult, if not 

impossible, to implement in the context of crisis 

response dashboards designed for the general public. 

As enactive learning “involves learning from the 

consequences of one’s actions” (Gupta et al., 2010, p. 

16), it is an effective approach to onboard users to a 

new IS. Based on the idea of providing “a guided 

simulated environment with rich feedback to [enable 

users to] evaluate their actions” (Gupta et al., 2010, p. 

18), we propose integrating conversational onboarding 

that allows users to familiarize themselves with using 

natural language to interact with the crisis response 

dashboard. Given the relative novelty of natural 

language interaction, particularly in the context of 

crisis response dashboards, conversational onboarding 

should provide users with the opportunity to try out 

interacting with the dashboard using natural language 

in a step-by-step manner, observe the consequences of 

their actions (e.g., how and why data visualizations 

change), and receive feedback when something goes 

wrong. Then, before actually using the dashboard to 

find the information they are looking for, users can 

learn how to use natural language to navigate the 

dashboard. Taken together, based on MR2, we 

formulate our third DP as follows: 

DP3: To enable the general public to seamlessly 

navigate a conversational dashboard for crisis 

response, provide users with conversational 

onboarding that takes them step-by-step through 

the natural language interaction with the 

dashboard because this helps users familiarize 

themselves with how to interact with the 

dashboard using spoken or written language. 

3.4 Testable Design Propositions 

Testable design propositions are a core component of 

a design theory (Gregor & Jones, 2007). Through the 

lens of our kernel theory, we therefore derived two 

testable propositions from the presented DPs. The 

primary outcome of interest and core construct from 

TEU is transparent interaction, which can be 

understood as the extent to which users can access 

information from an IS unimpeded by its user interface 

(Burton-Jones & Grange, 2013). As noted earlier, users 

can struggle to navigate the rich GUI of current crisis 

response dashboards to the information they need, due 

to difficulties with dashboards’ sliders, filters, and 

other interactive features. Considering these 

challenges, we argue that users can interact with a 

crisis response dashboard more transparently they have 

the ability to choose spoken or written language in their 

navigation of the dashboard. Instead of users having to 

translate an information need into a series of actions in 

the GUI (e.g., button clicks), which requires knowing 

and being able to use its features, formulating it in 

natural language is much easier (Lee et al., 2020). 

Consequently, users should be able to achieve higher 

levels of transparent interaction with a conversational 

dashboard built according to our DP1 and DP2. Hence, 

we propose: 

Proposition 1: A crisis response dashboard equipped 

with a conversational user interface allowing users 

to interact with the dashboard using natural 

language enables them to achieve higher levels of 

transparent interaction. 

TEU also posits that learning how to interact with the 

user interface of an IS can improve transparent 

interaction. As described earlier, current crisis 

response dashboards offer little help beyond a few 

tooltips and help buttons in teaching users how to 

navigate the interface and access information. 

Moreover, natural language is a rather new form of 

interaction with a dashboard that users might still need 

to learn. Therefore, we argue that providing users with 

conversational onboarding that can walk them through 

the natural language interaction with the dashboard 

(DP3) should facilitate their learning by helping users 

familiarize themselves with using spoken or written 

language in navigating the dashboard. Consequently, 

users should be able to achieve higher levels of 

transparent interaction if the conversational dashboard 
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offers conversational onboarding built according to 

DP3. Hence, we propose: 

Proposition 2: A conversational crisis response 

dashboard equipped with conversational 

onboarding walking users through the natural 

language interaction with the dashboard enables 

them to achieve higher levels of transparent 

interaction. 

3.5 Artifact Description 

To instantiate our DPs in an artifact, we developed a 

system architecture and implemented four key 

components. To ensure replicability and provide 

practitioners with actionable guidance on how to 

translate our DPs into appropriate features 

(Lukyanenko et al., 2020), we leveraged existing open-

source frameworks and libraries rather than developing 

components from scratch. Next, we present a detailed 

description of the overall system architecture (see 

Figure 3), its four key components, and its 

conversational onboarding.

 
Figure 2. System Architecture of the Conversational Dashboard 

3.5.1 Dashboard and Data Visualization 

Component 

The core component of our artifact is the 

conversational dashboard itself, which provides 

information about the COVID-19 pandemic through 

several data visualizations (e.g., charts, KPIs, maps) 

and offers users two ways of interacting with these 

visualizations: using natural language and a mouse. 

We identified common interaction types in current 

crisis response dashboards and decided to provide 

users with the ability to filter the data displayed in a 

visualization, to roll-up (abstract), and to drill-down 

(elaborate) the data on the state level. We used D3.js to 

create interactive data visualizations (Bostock et al., 

2011) based on publicly available data from Johns 

Hopkins University’s COVID-19 data repository 

(Dong et al., 2020). To change visualizations in real-

time, the data visualization component retrieves the 

required data from the database through a query 

module and provides it to the visualization rendering 

module, which then updates the data visualizations in 

the dashboard.  

3.5.2 Interaction Management Component 

The interaction management component is responsible 

for managing the communication between the event 

listeners that capture user interactions (e.g., button 

clicks, natural language input) and the corresponding 

functionality of the dashboard. For example, when a 

user selects a state in the drop-down menu, the event 

listener captures the interaction type (i.e., filtering) and 

the selected state so that the interaction management 

component can decide what dashboard functionality to 

invoke. In line with DP1, we connected this component 

to the NLP component that provides users with the 

ability to use spoken or written language. While 

natural language input in written form is directly sent 

to the NLP component for further processing, spoken 

user input is first translated into written text by the 

speech-to-text feature provided by Microsoft 

Cognitive Services. After the user input has been 

processed successfully, the results are returned to the 

interaction management component, which then 

adjusts the data visualizations accordingly. The 

mapping between the results provided by the NLP 

component and the dashboard functionality is 

implemented as a rule-based approach due to its finite 

nature. In line with DP2, the interaction mapper allows 

users to choose and switch between natural language 

and mouse interaction at any point in time depending 

on their preferences. As Figure 3 illustrates, users can 

set a filter for Florida, for example, either using natural 

language (e.g., “Show me the data for Florida”) or by 
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selecting Florida in the drop-down menu using their 

mouse.

 
Figure 3. Screenshot of the Conversational Dashboard with DP1 and DP2 

3.5.3 Natural Language Processing (NLP) 

Component 

To develop the NLP component, we used Microsoft’s 

Bot Framework (Microsoft, 2021), a comprehensive 

open-source framework for building conversational AI 

systems, which enables developers to create and 

manage conversation flows. In the following, we 

explain our implementation along the three 

subcomponents of (1) natural language understanding, 

(2) dialog management, and (3) natural language 

response generation (McTear et al., 2016). 

Natural Language Understanding (NLU). In 

contrast to traditional mouse interaction where a click 

directly triggers an action in the dashboard, a user’s 

natural language input (e.g., “Show me the data for 

Florida”) first needs to be analyzed to identify the 

user’s goal (e.g., filtering for Florida). For the 

development of the NLU subcomponent, we used 

Microsoft’s Language Understanding and Intelligent 

Service (LUIS). LUIS enables developers to create and 

train custom, purpose-specific language models by 

leveraging pre-existing and pre-built language models 

(Microsoft, 2017). Using LUIS, we created a custom 

language model to extract relevant entities (e.g., dates, 

state names, metrics) and to recognize the users’ intent 

(e.g., filter, drill-down, roll-up) from their spoken or 

written input. To create and train our language model, 

we performed two steps: First, since the language 

model had to be capable of extracting relevant entities, 

we derived an entity hierarchy with state names, dates, 

and metrics as entities together with their possible 

values from our database (e.g., all state names for the 

entity “state”). Subsequently, we integrated the entity 

hierarchy into LUIS to perform the entity extraction 

task through keyword matching (i.e., for state names, 

metrics) and prebuilt entities provided by LUIS (i.e., 

for dates). Second, the language model had to contain 

intents for each possible interaction type in the 

dashboard (i.e., filter, drill-down, roll-up), which can 

be mapped to the users’ natural language input. Thus, 

we created three intents with a set of training examples 

and identified entities that had to be included in a user 

input together with each intent. Since user input might 

not map to any of the possible interaction types, we 

also created the fallback intent for unspecific input 

such as “Hey” or “What can I do?”. Table 1 provides 

an overview of intents, entities, and examples. Finally, 

we refined our language model using training data 

collected from 27 Amazon Mechanical Turk workers 

who were asked to provide different formulations for 

each possible interaction type in the dashboard. The 

final model included 23 unique training examples for 

the filter intent, 17 for drill-down, and 9 for roll-up.

Table 1. Intents, Entities, and Examples in the Language Model 

Intent Example Required Entities Possible Entities 

Filter “Show me the data for Florida on the 1st of 

September”, “Show me deaths” 

At least one possible 

entity 

Metric; Date; State 

Drill-down “Go to Texas” State Metric; Date 

Roll-up “Go to overview” - - 

Fallback “Hey”, “Blue”, “What can I do?” - - 

DP1

DP2
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Dialog Management. The dialog management 

subcomponent maintains the dialog state, tracks the 

state of the dashboard, and generates a system action 

based on the previously extracted intent and entities. 

Using Microsoft’s Bot Builder SDK for .NET V4 

(Microsoft, 2021), we implemented the following three 

key features: context handler, confirmation strategy, 

and  error handling strategy. The context handler is 

primarily responsible for determining whether an 

action can be carried out in the dashboard based on its 

current state. For this, the context handler uses a rule-

based approach to first check whether the entities 

extracted from the user’s input satisfy the requirements 

of the recognized intent (see Table 1). Additionally, it 

continuously tracks the dialog and dashboard state at 

runtime in a local storage object. Based on the 

dashboard’s current state, the context handler then 

checks whether the action type mapped to the intent is 

valid or whether constraints apply. If the context 

handler deems an action to be valid, it invokes the 

confirmation strategy, updates its current state, and 

forwards the recognized intent with the extracted 

entities to the interaction management component. 

However, if the context handler deems an action to be 

invalid, for example when user input with zero entities 

is mapped to the filter or drill-down intent or if the 

fallback is triggered, it invokes the error handling 

strategy to inform the user that their desired action 

could not be performed in the dashboard. 

Natural Language Response Generation. 

Regardless of whether the confirmation or error 

handling strategy is invoked, the dashboard responds 

to users after they have provided input, giving explicit 

feedback about what actions were performed. Thus, 

the natural language response generation 

subcomponent, which is a crucial component of any 

CUI (McTear et al., 2016), enables turn-by-turn 

conversations between the dashboard and its users, 

consistent with our objective of designing a 

conversational dashboard. Its key feature is a rule-

based feedback generator that uses pre-defined 

response templates (see Table 2) to provide 

informative feedback when the confirmation strategy 

is invoked and suggestive feedback when the error 

handling strategy is invoked or the fallback intent is 

triggered.

Table 2. Natural Language Response Templates 

Strategy Intent Response Template Example 

Confirmation 

Strategy 

Filter You have filtered for State, Metric, and Date. You have filtered for Idaho, Cases, and 

2020-05-15. 

Drill-down You have selected State {for Date and Metric}. You have selected Florida for 2020-08-29.  

Roll-up You are back at the overview. - 

Error Handling 

Strategy 

Fallback You can use the following commands to interact 

with the dashboard: 

• Filter: “Show me Florida for June 1st.”  

• Zoom In: “Go to New York” 

• Back to Overview: “Go to overview” 

- 

3.5.4 Conversational Onboarding 

To instantiate DP3, we implemented step-by-step 

conversational onboarding through which users can 

familiarize themselves with using natural language to 

interact with the dashboard (see Figure 4). When users 

access the conversational dashboard for the first time, 

they are asked to complete the onboarding before they 

can start interacting with the dashboard. Following the 

suggestions of Gupta and Bostrom (2009), we 

implemented the following features in our 

conversational onboarding that correspond to high 

levels of the enactive learning dimensions (e.g., 

structuredness and restrictiveness of practice, feedback). 

To help users practice the essential skills for interacting 

with the dashboard using natural language, we focused 

their practice on how to formulate natural language 

input for the core dashboard functionalities such as 

filtering, drill-down, and roll-up. Further, we restricted 

the practice flow to a predefined sequence so that at first 

users are introduced to the basic actions with exemplary 

input, and then gradually learn more complex actions 

that combine several basic ones. After each 

demonstration of an action in the dashboard, users are 

prompted to immediately reproduce it in order to 

minimize the lag between the demonstration and users’ 

practice. Finally, users receive immediate feedback on 

their natural language input. For example, if relevant 

entities were missing in their natural language input, 

users are informed that not all entities were included in 

order to reproduce the action in the dashboard.
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Figure 4. Screenshot of the Conversational Onboarding (DP3) 

4 Evaluation 

We performed two evaluations of our artifact. First, we 

conducted a performance evaluation of its key 

technical component to assess whether it enables 

effective natural language interaction in spoken and 

written form. Second, we carried out an experimental 

study to test whether our proposed design can improve 

users’ transparent interaction with a crisis response 

dashboard. 

4.1 Performance Evaluation of the 

Natural Language Processing (NLP) 

Component 

At the heart of our artifact is an NLP component that 

allows the conversational dashboard to understand and 

act on the user’s natural language input. To assess the 

NLP component’s quality, we conducted a 

performance evaluation that specifically focused on 

speech-to-text translation, entity extraction, and intent 

mapping. For the evaluation, we used the dataset of 

3119 natural language inputs collected in our user 

evaluation (see Section 4.2 for details). Initially, this 

dataset only included natural language input used to 

navigate the dashboard (e.g., “Show me Idaho August 

31st”) and the corresponding results provided by the 

NLP component (e.g., intent = “filter”, entities = 

“Idaho” and “August 31”). Since no ground truth was 

available in the dataset for the evaluation, we recruited 

264 crowd workers on Amazon Mechanical Turk to 

obtain ground truth labels for each natural language 

input. Additionally, we instructed workers to highlight 

if they recognized an input as syntactically incorrect or 

if there were misunderstandings (e.g., “soon out” 

instead of “zoom out”). Each input was labeled by two 

workers who had a moderate level of agreement 

(Cohen’s Kappa = .52). To break ties in cases of 

disagreement, a research assistant who received the 

same instructions and explanations reviewed each 

input with a disagreement between the workers and 

assigned a final label. The final dataset included 3119 

natural language inputs, results of the NLP component, 

and human ground-truth labels for speech-to-text, 

entities, and intents. 

4.1.1 Performance Measures 

We used established measures to evaluate the 

performance of the NLP component. First, to verify the 

speech-to-text translation quality for all spoken input, 

we used the binary label that specified whether a 

particular input was syntactically correct. Based on our 

labeled dataset, we calculated the accuracy of speech-

to-text translation as the ratio of correctly translated 

spoken inputs to the total number of spoken inputs. 

Second, to evaluate the entity extraction and intent 

mapping performance, we compared the results 

provided by our NLP component against the intent and 

entity labels human workers provided. We used 

standard classification measures that have been used in 

similar work (e.g., Siering et al., 2021)—that is, 

precision, recall, and F1-score—and calculated them 

through micro-averaging the classes (i.e., intent or 

entity). Precision measures the percentage of correctly 

classified instances (i.e., intents and entities) to the 

total number of instances for that class of instances 

retrieved by the intent mapping or entity extraction 

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
). Recall measures the percentage 

of correctly classified instances among all true positive 

cases of that class of instances (𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
). The 

F1-score is calculated as the weighted average of 

precision and recall ( 𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
). 

Further, to benchmark our intent mapping against 

related systems (Srinivasan & Stasko, 2018), we 

additionally calculated the accuracy as the number of 

Provision of feedback to 

users based on their 

actual natural language 

input

Instructions on how to 

use natural language

Examples of how to 

formulate natural 

language input
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correctly classified inputs divided by the total number 

of inputs (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
). 

4.1.2 Results 

Speech-to-Text. Out of the total 3119 natural language 

inputs, 2499 (80.1%) were performed using spoken 

language. For these spoken inputs, we calculated an 

overall speech-to-text accuracy of 90.2%. This means 

that 9.8% of the spoken input included syntactical 

errors that could have negatively affected the 

subsequent entity extraction and intent mapping steps. 

For example, the word “cases” was incorrectly 

translated to “kisses” several times, resulting in user 

input that missed the metric “cases”. However, the 

overall accuracy of more than 90% indicates that our 

speech-to-text translation was able to achieve a good 

performance. 

Entity Extraction. For the analysis of the entity 

extraction performance, we used all 3119 spoken and 

written inputs made by users, including those labeled 

as syntactically incorrect. Based on the F1-scores 

shown in Table 3, entity extraction worked the best for 

dates (95%) and states (94%). In contrast, entity 

extraction yielded a lower F1-score of 83% for the 

entity “metric”. One reason for the lower performance 

of this entity is that the phrase “people had died” was 

used to describe “deaths”, which was not included in 

the training data for this entity. Overall, the entity 

extraction step achieved an F1-score of 92%. 

Moreover, the results show that our entity extraction 

performed equally well for spoken (91%) and written 

input (93%). Table 3 provides the overall and entity-

level precision and recall measures. 

Intent Mapping. The final step of the analysis was to 

evaluate the intent mapping performance. Again, we 

used all 3119 natural language inputs, including those 

labeled as syntactically incorrect. Only 98 inputs 

(3.1%) were labeled as fallback (i.e., not supported 

input). Overall, our intent mapping achieved a high 

accuracy of 82%, demonstrating comparable or better 

performance than related systems that offer natural 

language interaction with data visualizations (e.g., 

Srinivasan & Stasko, 2018). Additionally, the results 

show that our intent mapping performed equally well 

for spoken (83%) and written input (79%). The slight 

differences can be partially explained by spelling 

mistakes, such as “Select ketncuky”, which mainly 

occurred in written input. In sum, our intent mapping 

achieved a high overall F1-score of 82% on the 

unbalanced dataset. While our main intents performed 

well, the fallback intent achieved a lower precision 

level (20%) because it included user input with errors 

from incorrect speech-to-text translation. Further, the 

recall for the fallback intent was only 29% since the 

intent mapping learned in the training phase that the 

phrase “Show me...” is strongly associated with the 

filter intent. Therefore, it also recognized inputs, such 

as “Show me this”, as a filter intent and not as a 

fallback, which our artifact consequently needed to 

deal with since a target entity was missing. Table 3 

presents all overall and intent-level results.

Table 3. Performance Evaluation Results for Entity Extraction and Intent Mapping 

 Precision Recall F1 N 

Entities 

State 96% 92% 94% 2,251 

Date 96% 95% 95% 1,579 

Metric 80% 87% 83% 1,176 

Overall 92% 92% 92%  

 

Intents 

Filter 89% 92% 90% 2,437 

Drill-down 67% 49% 57% 472 

Roll-up 61% 54% 57% 112 

Fallback 20% 29% 24% 98 

Overall 82% 82% 82% 3,119 

Response Time. Finally, to evaluate the NLP 

component’s performance in terms of speed, we 

analyzed the overall response time for valid inputs 

starting from the time a user provided spoken or 

written input and ending with the NLP component 

sending the results back to the interaction management 

component. The results of this analysis show that it 

took the NLP component only 0.9 seconds on average 

to fully process natural language input and update the 

visualizations in the dashboard accordingly. 

Taken together, the results of our performance 

evaluation based on a dataset of 3119 manually labeled 

natural language inputs show that the NLP component 

performed well in terms of accuracy and speed, 

suggesting that it provides a robust technical basis to 

enable natural language interaction with our 

conversational dashboard in spoken or written form. 

More specifically, the NLP component achieved a 

satisfactory performance on all tasks (i.e., speech-to-

text translation, entity extraction, and intent mapping), 

indicating that it was able to effectively understand 

what users were looking for in the dashboard and to 

feed this information back to the other components of 

our conversational dashboard. 
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4.2 User Evaluation 

To evaluate whether our proposed design can improve 

users’ transparent interaction with a crisis response 

dashboard, we conducted a large-scale online 

experiment. Following the approach of Morana et al. 

(2019), we developed six versions of our artifact with 

different combinations of instantiated DPs to examine 

their effect on transparent interaction. More 

specifically, we compared a traditional dashboard 

(TDB) with two types of conversational dashboards: 

natural language-only (CDB-NLO) and natural 

language-enhanced (CDB-NLE). As Table 4 shows, 

the CDB-NLO instantiated only DP1, whereas the 

CDB-NLE instantiated both DP1 and DP2. TDB did 

not instantiate these DPs to establish a baseline 

condition representing the current design of crisis 

response dashboards. Further, we developed two 

different versions of each dashboard with and without 

conversational and/or traditional onboarding (DP3) 

depending on the respective dashboard type, resulting 

in a total of six different dashboards.

Table 4. Overview of Dashboard Types and Instantiated Design Principles 

 Dashboard Type 

Design 

Principles 

Instantiated* 

Description 

Traditional 

Dashboard 
Traditional dashboard (TDB) - 

Participants were restricted to interact with the 

dashboard using a mouse. 

Conversational 

Dashboard 

Natural language-only conversational 

dashboard (CDB-NLO) 

DP1 Participants were restricted to interact with the 

dashboard using natural language. 

Natural language-enhanced 

conversational dashboard (CDB-NLE) 

DP1  

DP2 

Participants were able to interact with the 

dashboard using both natural language and 

mouse. 
Note. *For each dashboard type, we developed two versions: one with onboarding (DP3 instantiated) and one without (DP3 not instantiated), 

resulting in six different dashboards used in the experiment. 

Against the backdrop of these different artifact 

instantiations, we translated our previously derived 

design propositions (see Section 3.4) into four specific 

hypotheses that we empirically tested in the 

experiment. According to our first proposition, a crisis 

response dashboard equipped with a CUI should 

improve transparent interaction because it allows users 

to interact with the dashboard using spoken or written 

language in a natural way. Based on this proposition, 

we argue that users will achieve higher levels of 

transparent interaction with a conversational 

dashboard than with a traditional dashboard, regardless 

of whether natural language interaction replaces 

existing ways of interacting with a dashboard using the 

mouse (CDB-NLO) or whether it complements them 

(CDB-NLE). Hence, we hypothesize: 

Users who interact with a natural language-only 

conversational dashboard (CDB-NLO; H1) or a 

natural language-enhanced conversational 

dashboard (CDB-NLE; H2) achieve higher levels 

of transparent interaction than those interacting 

with a traditional dashboard (TDB). 

According to our second proposition, a conversational 

crisis response dashboard equipped with 

conversational onboarding should improve transparent 

interaction because it facilitates users’ learning by 

walking them through the natural language interaction 

with the dashboard. Therefore, based on our second 

proposition, we argue that users of conversational 

dashboards, regardless of whether natural language 

interaction replaces existing ways of interacting with a 

dashboard using the mouse (CDB-NLO) or whether it 

complements them (CDB-NLE), will particularly 

benefit from completing the conversational 

onboarding before interacting with the dashboard. 

Hence, we hypothesize: 

Users who complete the conversational 

onboarding of a natural language-only 

conversational dashboard (CDB-NLO; H3) or a 

natural language-enhanced conversational 

dashboard (CDB-NLE; H4) achieve higher levels 

of transparent interaction than those who do not. 

Finally, we draw on TEU to formulate two additional 

hypotheses on the effects of transparent interaction on 

efficiency and effectiveness. TEU proposes that 

transparent interaction increases users’ efficiency by 

saving them time when they navigate the system and 

improves their effectiveness by helping them stay 

focused on the task rather than getting distracted by the 

difficulties of finding their way around the system’s 

interface (Burton-Jones & Grange, 2013). Based on 

this reasoning, we argue that higher levels of 

transparent interaction with a crisis response 

dashboard will increase users’ efficiency and 

effectiveness in finding the information they need. 

Users who navigate the dashboard more quickly are 

able to access information in less time. In addition, 

they are more effective because they make fewer 

mistakes in their interaction and thus are less likely to 

give up on a task or end up with incorrect information. 

Hence, we hypothesize: 
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Users’ transparent interaction with a crisis 

response dashboard increases their efficiency 

(H5) and effectiveness (H6) in finding the 

information they need. 

4.2.1 Method 

To test our hypotheses, we conducted an online 

experiment in which participants interacted with one of 

the six dashboards to perform four information finding 

tasks. The experiment used a 3 (dashboard type: TDB 

vs. CDB-NLO vs. CDB-NLE) x 2 (onboarding: absent 

vs. present) between-subjects design, resulting in six 

experimental conditions. 

Experimental Procedure. Participants accessed the 

experiment via a link provided on Amazon Mechanical 

Turk (MTurk). After reading a short description and 

providing informed consent, participants were 

randomly assigned to one of the six experimental 

conditions. In the first step, participants were 

instructed to test their microphones to ensure that they 

would be able to use natural language in spoken form 

during the experiment and that there was only minimal 

background noise. Only if the system was able to 

understand them correctly, could they continue with 

the experiment. Next, participants watched a 50-

second video that provided an overview of the 

dashboard and its COVID-19 data visualizations. After 

watching the video, participants in the three conditions 

without onboarding immediately entered the main part 

of the experiment. In contrast, participants in the other 

three conditions first completed the onboarding of their 

dashboard. The onboarding was designed to match the 

specific experimental condition so that participants 

only familiarized themselves with the ways of 

interaction that they would be able to use later. For 

example, the onboarding in the TDB condition did not 

include an introduction to natural language interaction 

and resembled an interactive guided tour through the 

GUI. In the main part of the experiment, participants 

were instructed to perform four different information 

finding tasks using the dashboard (see Table A2). The 

task order was randomized and the dashboard was reset 

after each task. The tasks were designed to represent 

realistic information needs based on our discussions 

with actual and potential dashboard users. For a fair 

comparison between different dashboard types, we 

designed the tasks in such a way that participants could 

not simply “copy and paste” the task description into 

the chat window and solve the task; rather, they needed 

to reframe it and/or break it down into multiple steps. 

For each task, participants could enter their solution in 

an input field below the dashboard or skip the task if 

they were not able to come up with a solution. Finally, 

after completing the main part of the experiment, 

participants filled out a survey in which they could 

provide feedback and report on technical problems. On 

average, the experiment took 25 minutes to complete. 

Participants. We recruited 292 participants via 

MTurk. Researchers increasingly use MTurk because 

the participant pool is more diverse than typical 

university participant pools (Buhrmester et al., 2011), 

which supported our objective of reaching a wide 

range of users from different backgrounds. We 

excluded 21 participants who failed an attention check 

question, leaving 271 participants for analysis (45–46 

participants per condition). Of these participants, 121 

were female (44.6%) and 150 were male (55.4%). The 

mean age was 38.33 years (SD = 11.1). Table A1 

shows full sample characteristics. Participants were 

paid $4.5 for their participation. Further, they could 

earn a bonus payment of $0.2 for each correctly solved 

task and an additional bonus of $0.2 if they were 

among the 20% fastest participants for this specific 

task. Therefore, the maximum payment was $6.1 ($4.5 

+ 4 x $0.2 + 4 x $0.2). 

Variables and Operationalization. Transparent 

interaction can be assessed using self-reported 

measures and behavioral measures (Burton-Jones & 

Grange, 2013). Since self-reported measures can be 

subject to a range of biases and demand effects 

(Dimoka et al., 2011), we used a behavioral measure 

of transparent interaction. Following Burton-Jones and 

Grange's (2013) suggestions, we operationalized 

transparent interaction based on “the extent to which a 

user’s navigation path […] approaches the quickest 

path that can be taken” (p. 655). For each task in the 

experiment, we identified the quickest path by 

determining the minimum number of steps (e.g., button 

clicks, natural language inputs) required to navigate 

the dashboard to access the information needed to 

complete a particular task. Since this number depends 

on which ways of interaction a dashboard offers its 

users (e.g., natural language and/or mouse), we 

calculated separate values for each dashboard type. For 

each participant, we then calculated the level of 

transparent interaction as the average ratio of the 

minimum number of navigation steps required for 

accessing the needed information to the number of 

navigation steps a participant actually took to correctly 

solve a task (see Table A3 for examples). In contrast to 

transparent interaction (a dimension of effective use), 

effectiveness and efficiency are dimensions of (task) 

performance. Effectiveness, which is defined as the 

“extent to which a user has attained the goals of the 

task for which the system was used” (p. 654), was 

operationalized as the number of correctly solved 

tasks. Efficiency, which is defined as “the extent of 

goal attainment for a given level of input (such as effort 

or time)” (p. 654), was calculated as the average time 

needed to complete all tasks that were correctly solved. 

Thus, effectiveness and efficiency correspond to users’ 

higher-level goal of accessing a particular piece of 

information to answer a specific question (the desired 

end), while transparent interaction relates to users’ 

lower-level goal of navigating the dashboard in a 
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transparent way (the means) (cf. Burton-Jones & 

Grange, 2013, p. 641). Finally, we examined users’ 

demographics (i.e., age, gender, education) and prior 

experience with computers, dashboards, and natural 

language interaction as control variables. 

4.2.2 Results 

Manipulation and Randomization Checks. We 

conducted two manipulation checks to ensure that 

participants used the different versions of the 

dashboard as intended. First, we asked participants to 

identify how they were able to interact with the 

dashboard (i.e., with a mouse, spoken and written 

language) and found that 98 percent of the participants 

correctly identified their condition, which indicates 

that the dashboard type manipulation was successful. 

Second, to examine whether the onboarding 

successfully manipulated users’ perceived ability to 

navigate the dashboard, we asked participants in the 

respective conditions before and after the onboarding 

to indicate their level of self-efficacy in using the 

dashboard on a 7-point Likert scale (Hsieh et al., 

2008). The results of a paired-samples t-test show that 

participants’ self-efficacy was significantly higher 

after completing the onboarding (M = 6.40, SD = 0.94) 

than before (M = 6.13, SD = 1.02; t(134) = 3.58, p < 

.001). Moreover, participants in the conditions with 

onboarding rated their self-efficacy significantly 

higher after familiarizing themselves (M = 6.40, SD = 

0.94) compared to participants in conditions without it 

(M = 5.90, SD = 1.04; t(266.76) = 4.15, p < .001). 

Taken together, these results suggest that the 

onboarding also successfully manipulated users’ 

perceived ability to interact with the dashboard. 

Finally, we assessed the efficacy of our randomization 

procedure by comparing the six experimental 

conditions on several control variables. There were no 

significant differences in age (F(5, 265) = 0.77, p = 

.57), gender (χ²(10) = 7.38, p = .69), education (χ²(20) 

= 18.6, p = .55), prior experience with computers (F(5, 

265) = 0.61, p = .69), prior experience with dashboards 

(χ²(20) = 15.2, p = .77), and prior experience with 

natural language interaction (χ²(20) = 10.2, p = .96). 

This suggests that the randomization in our experiment 

was also successful.

Table 5. Descriptive Statistics for Transparent Interaction 

 Onboarding 

Absent Present 

Dashboard Type 

TDB 0.30 (0.14) 0.33 (0.15) 

CDB-NLO 0.57 (0.26) 0.63 (0.24) 

CDB-NLE 0.31 (0.19) 0.42 (0.25) 
Note. Means with standard deviations in parentheses. 

Hypothesis Testing. The descriptive statistics for 

transparent interaction across the experimental 

conditions are shown in Table 5. To test our 

hypotheses on the effects of dashboard type and 

onboarding on users’ transparent interaction with the 

dashboard (H1-H4), we conducted a two-way 

ANOVA. The results show significant effects of both 

dashboard type (F(2, 265) = 48.3, p < .001) and 

onboarding on transparent interaction (F(1, 265) = 

7.38, p = .007). The interaction effect was not 

significant (F(2, 265) = 0.97, p = .38). Subsequently, 

we used planned contrasts to test our hypotheses. First, 

consistent with H1, the results show that participants 

in the CDB-NLO condition (M = 0.60, SD = 0.25) 

achieved a significantly higher level of transparent 

interaction than participants in the TDB condition (M 

= 0.31, SD = 0.14; t(265) = 9.2, p < .001; H1 

supported). However, we find no significant difference 

in transparent interaction between participants in the 

CDB-NLE (M = 0.36, SD = 0.23) and TDB condition 

(M = 0.31, SD = 0.14; t(265) = 1.64, p = .10; H2 

rejected). Further, in the CDB-NLO condition, 

transparent interaction shows no significant difference 

between participants who completed the onboarding 

(M = 0.63, SD = 0.24) and those who did not (M = 0.57, 

SD = 0.26; t(265) = 1.31, p = .18; H3 rejected). In 

contrast, in the CDB-NLE condition, participants who 

completed the onboarding (M = 0.42, SD = 0.25) 

achieved a significantly higher level of transparent 

interaction than those who did not (M = 0.31, SD = 

0.19; t(265) = 2.65, p = .008; H4 supported). Overall, 

these results suggest that compared to traditional 

dashboards, conversational dashboards improve 

transparent interaction, particularly if participants can 

use only natural language and mouse interaction is 

removed (i.e., CDB-NLO). However, if users can 

choose between natural language and mouse as in 

CDB-NLE, only participants who have completed the 

onboarding achieve a higher level of transparent 

interaction with the dashboard. Finally, to test the 

remaining hypotheses on the effects of transparent 

interaction on efficiency (H5) and effectiveness (H6), 

we ran a multivariate regression with transparent 

interaction as the independent variable and efficiency 

and effectiveness as the two dependent variables. 

Consistent with our hypotheses and in line with TEU, 

the results show that transparent interaction has a 

significant positive effect on efficiency (β = 0.58, p < 

.001; H5 supported) and effectiveness (β = 0.9, p < 

.001; H6 supported). 
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Post-hoc Analysis. Contrary to our expectations, 

participants in the CDB-NLE condition did not achieve 

significantly higher levels of transparent interaction 

than participants in the TDB condition. Since 

participants in the CDB-NLE (vs. CDB-NLO) 

condition could choose whether or not to interact with 

the dashboard using natural language, a possible 

explanation could be that some of them used only the 

“traditional” way of interacting with the dashboard 

using the mouse, which might have negatively affected 

their level of transparent interaction. To investigate 

this further, we conducted a post-hoc analysis of user 

behavior in the CDB-NLE condition. For each 

participant, we calculated the proportion of navigation 

steps they took using natural language (in both spoken 

and written form). This resulted in a continuous 

variable ranging from 0 to 1, where a value of zero 

indicates that natural language was not used at all. 

Subsequently, we ran a linear regression model with 

transparent interaction as the dependent variable and 

the proportion of navigation steps via natural language 

as our independent variable. The results in Figure 5 

show that the proportion of navigation steps via natural 

language significantly influenced transparent 

interaction (β = 0.54, p < .001), suggesting that the 

more users interact with the dashboard using natural 

language, the higher their level of transparent 

interaction.

 
Figure 5. Effect of Proportion of Interactions performed via Natural Language and Conversational 

Onboarding on Transparent Interaction (CDB-NLE) 

Since half of the participants in the CDB-NLE 

condition completed the conversational onboarding to 

familiarize themselves with how to interact with the 

conversational dashboard, it is conceivable that those 

participants also more frequently used natural 

language than participants who did not receive the 

onboarding. Therefore, we conducted a mediation 

analysis using the bootstrapping approach with 5000 

samples (Hayes, 2017). We estimated a simple 

mediation model (Model 4) with onboarding as the 

independent variable, proportion of navigation steps 

via natural language as the mediator, and transparent 

interaction as the dependent variable. The results show 

that the direct effects of both onboarding (β = 0.089, p 

= .002) and proportion of navigation steps via natural 

language (β = 0.53, p < .001) are significant. However, 

the effect of onboarding on proportion of navigation 

steps via natural language (p = .46), as well as the 

indirect effect of onboarding on transparent interaction 

through proportion of navigation steps via natural 

language, are not significant (CI = [-0.03, 0.04]; p = 

.47). In summary, these results suggest that although 

completing the onboarding did not result in a 

significant increase in the use of natural language to 

interact with the dashboard, it helped participants to 

achieve higher levels of transparent interaction. A 

possible explanation could be that participants had 

learnt when to choose which way of interaction and 

how to formulate natural language input more 

effectively to navigate the dashboard. The results also 

provide further evidence that since participants could 

choose between natural language and mouse, some of 

them did not harness the potential benefits of natural 

language interaction, which ultimately resulted in 

lower levels of transparent interaction. Put differently, 

on average participants in the CDB-NLE condition did 

not perform better than those in the TDB condition 

because some of them did not leverage our new 

functionality but used only their mouse to interact with 

the dashboard. Table 6 summarizes the results of the 

hypothesis testing.

Table 6. Summary of the Results 

Hypothesis Result Findings 

H1 Supported Users who can interact with a dashboard only using natural language (CDB-NLO) achieve higher 

levels of transparent interaction than users who can interact only using a mouse (TDB). 

H2 Not supported Users who can interact with a dashboard using both natural language and mouse (CDB-NLE) do 

not achieve higher levels of transparent interaction than users who can interact using only the 

Absent

Present
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mouse (TDB). However, a post-hoc analysis shows that transparent interaction with a CDB-NLE 

depends on whether and how often users use natural language in their interaction. 

H3 Not supported Completing the conversational onboarding of a CDB-NLO does not improve users’ transparent 

interaction with a CDB-NLO. 

H4 Supported Completing the conversational onboarding of a CDB-NLE improves users’ transparent 

interaction with a CDB-NLE. 

H5 Supported Transparent interaction increases efficiency. 

H6 Supported Transparent interaction increases effectiveness. 

5 Discussion 

Providing information to protect the public’s health 

and safety is an important task in crisis response. In 

recent crises, such as the COVID-19 pandemic, many 

governments and health organizations developed 

dashboards that organize complex crisis-related data in 

an easy-to-digest visual format. Although these crisis 

response dashboards target the general public, research 

suggests that the average user could face difficulties in 

interacting with a dashboard and finding the 

information needed to make everyday decisions. To 

address this challenge, we proposed a theory-driven 

design for conversational dashboards in crisis response 

and developed a conversational dashboard for the 

COVID-19 pandemic following the DSR approach. In 

contrast to current crisis response dashboards, our 

artifact enables users to use natural language in spoken 

or written form to interact with the dashboard. In 

addition, our artifact includes conversational 

onboarding that helps users familiarize themselves 

with how to interact with the dashboard using natural 

language. To rigorously evaluate our proposed design, 

we conducted a large-scale online experiment with six 

different versions of our dashboard. The evaluation 

results show that compared to a traditional dashboard, 

users achieve higher levels of transparent interaction 

with our dashboard, ultimately increasing their 

efficiency and effectiveness in finding the information 

they need. Moreover, the results demonstrate that the 

conversational onboarding supports users in learning 

how to interact with the dashboard, particularly when 

they can use both natural language and mouse, which 

further improves their transparent interaction. 

Following the guidelines of Gregor and Jones (2007), 

we have synthesized our findings into a nascent design 

theory for conversational dashboards in crisis response 

(see Table 7).

Table 7. A Nascent Design Theory for Conversational Dashboards in Crisis Response 

Component Description 

Purpose and scope The purpose of the design theory is to provide prescriptive knowledge on how to design conversational 

dashboards for crisis response. 

Constructs The design theory builds on the following constructs from TEU (Burton-Jones & Grange, 2013): 

transparent interaction, efficiency, effectiveness, and the two drivers of effective use (i.e., adaptation and 

learning). 

Principles of form 

and function 

We propose three DPs for the design of conversational dashboards in crisis response: 

- DP1: To enable the general public to seamlessly navigate a dashboard for crisis response, 

provide users with the ability to use spoken or written language in a natural way because 

articulating an information need in natural language is easier than translating it into a series of 

actions in the graphical user interface. 

- DP2: To enable the general public to seamlessly navigate a dashboard for crisis response, 

provide users with the ability to choose between natural language and mouse because it gives 

them flexibility for the task at hand and takes their individual preferences into account.  

- DP3: To enable the general public to seamlessly navigate a conversational dashboard for crisis 

response, provide users with conversational onboarding that takes them step-by-step through 

the natural language interaction with the dashboard because this helps users familiarize 

themselves with how to interact with the dashboard using spoken or written language. 

Justificatory 

knowledge 

The three MRs were derived from TEU, our kernel theory. In addition, our DPs were informed by research 

on affordances (DP1-2) and enactive learning (DP3). 

Testable 

propositions 

We derived two testable propositions to evaluate our proposed design: 

- Proposition 1: A crisis response dashboard equipped with a conversational user interface 

allowing users to interact with the dashboard using natural language enables them to achieve 

higher levels of transparent interaction. 

- Proposition 2: A conversational crisis response dashboard equipped with conversational 

onboarding walking users through the natural language interaction with the dashboard enables 

them to achieve higher levels of transparent interaction. 

Artifact mutability The conversational dashboard is mutable, specifically with respect to the underlying data. While updates 

to the existing data can be handled without major changes, more adaptation is required for integrating new 

metrics (e.g., number of people vaccinated), providing new data visualizations, or supporting additional 
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languages. With more substantive changes, the artifact could also be adapted for use in other crises (e.g., 

other pandemics or natural disasters). 

Principles of 

implementation 

To instantiate the DPs in our artifact, we developed a system architecture based on existing open-source 

frameworks and libraries (see Section 3.5), which can serve as a blueprint for implementing similar 

artifacts. 

Expository 

instantiation 

The design theory was instantiated in an artifact: a conversational dashboard for the COVID-19 pandemic. 

A demonstration video can be accessed from https://youtu.be/eJZK41HDbk0.  

5.1 Theoretical Contributions 

This paper makes three important theoretical 

contributions. Our core contribution is a nascent design 

theory that offers explicit prescriptions on how to 

extend crisis response dashboards with natural 

language interaction capabilities in order to improve 

users’ transparent interaction and access to 

information. While previous research and current crisis 

response dashboards have focused heavily on GUIs, 

we propose an innovative, theory-driven design for 

conversational dashboards and instantiate it in a novel 

data science artifact: a conversational dashboard for 

the COVID-19 pandemic equipped with a CUI to allow 

natural language interaction in spoken or written form. 

With these findings, we contribute to research on 

dashboard design, both in general and in the specific 

context of crisis response, by delivering prescriptive 

knowledge for designing conversational crisis 

response dashboards that enable faster and easier 

access to important crisis-related information. More 

broadly, our findings also add to the data science 

literature by providing novel insights on how natural 

language can narrow the gap between the creation and 

consumption of insights provided by data science 

artifacts, particularly when they are designed for 

broader audiences. While prior research has 

emphasized key activities (e.g., data analysis, model 

development) in the earlier stages of the information 

value chain (Abbasi et al., 2016), the ultimate goal of 

data science is to offer actionable insights that support 

decision making (Grover et al., 2018). With our focus 

on the latter stages of the information value chain, we 

therefore complement existing data science research 

by providing design guidelines for helping users access 

information in dashboards so that they can extract 

insights required for improved decision making and 

ultimately take full advantage of such data science 

artifacts. 

Second, our findings shed light on potential design 

trade-offs that arise in providing users with multiple 

ways of interacting with a crisis response dashboard. 

As predicted, we find that users achieve higher levels 

of transparent interaction when they can use only 

natural language instead of only their mouse to interact 

with the dashboard, thus confirming our expectations 

that navigating a dashboard by articulating an 

information need in natural language is generally 

easier than translating it into a series of actions in the 

GUI. However, our results also suggest that when 

given the opportunity to use both natural language and 

mouse, a number of users prefer not to use natural 

language at all in interacting with the dashboard. 

Instead, they rely solely on the more familiar mouse 

interaction, which unfortunately often leads to lower 

levels of transparent interaction. This finding is 

consistent with TEU (Burton-Jones & Grange, 2013), 

which posits that transparent interaction is not a 

property of the system, but rather involves a user, 

system, and task. In other words, different users use the 

same dashboard for the same task but achieve different 

levels of transparent interaction because one leverages 

natural language while another uses the mouse. 

Consequently, it could be argued that natural language 

and mouse interaction should not be implemented 

together; rather, one must be chosen over the other 

(preferably natural language interaction). However, 

our results suggest that this dilemma can be addressed 

through conversational onboarding, which allows 

users not only to familiarize themselves with how to 

interact with the dashboard using natural language, but 

also to learn when and where to choose which way of 

interacting. This might also explain why onboarding 

has a weaker impact on transparent interaction when 

users have only mouse or only natural language 

available instead of both. In such contexts, users do not 

have the possibility of deciding for themselves and 

therefore inevitably have to deal with the benefits and 

challenges that come with one particular way of 

interacting with the dashboard. Taken together, our 

findings suggest that conversational onboarding is a 

valuable addition to conversational dashboards, even if 

it requires users to take an additional step before they 

can actually use the dashboard. In summary, these 

findings contribute to the emerging stream of research 

on novel interaction modes (e.g., Liu et al., 2021) by 

uncovering and addressing design trade-offs in crisis 

response dashboards that can be navigated using both 

natural language and mouse. 

Third, our research offers a methodological 

contribution to the IS use literature by demonstrating a 

novel approach for measuring transparent 

interaction—a key dimension of effective use—based 

on user interaction data. Although Burton-Jones and 

Grange (2013) have noted that “self-report measures 

alone may prove insufficient” to measure effective use 

objectively (p. 653), existing research has mostly 

relied on self-reported data (Trieu et al., 2022). Other, 

https://youtu.be/eJZK41HDbk0
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more objective approaches, such as the observation of 

users in their workplace setting (e.g., Burton-Jones & 

Volkoff, 2017), are often time-consuming and labor-

intensive. In contrast, we use log data of user 

interactions with the dashboard (e.g., mouse clicks, 

natural language input) to provide a more objective 

assessment of users’ level of transparent interaction by 

comparing their actual navigation path to the minimum 

number of navigation steps that are required to access 

a particular piece of information in the dashboard. 

Therefore, researchers can use our approach as a 

blueprint for a viable, less time-consuming alternative 

or supplement to existing measurement approaches of 

effective IS use.  

5.2 Practical Implications 

The outcomes of our DSR project have important 

implications for data science practitioners who build 

models, create visualizations, and develop dashboards 

for crisis response. Industry-standard data science 

processes, such as CRISP-DM (Shearer, 2000) and 

Microsoft’s Team Data Science Process (Microsoft, 

2022), emphasize that the successful deployment of 

data science artifacts (e.g., dashboards) and their use 

by the target audience is a crucial step in any data 

science project. Only if users are able to access and 

extract insights from a data science artifact, can its 

value be realized (Davenport & Malone, 2021). 

Against this backdrop, our work can help data 

scientists realize the potential of natural language 

interaction to make their artifacts in general and 

dashboards in particular more accessible to broader 

audiences. To this end, the design principles, system 

architecture, and in-depth description of our artifact—

a conversational COVID-19 dashboard—provide 

actionable guidance on how to leverage existing open-

source frameworks and cloud services (e.g., 

Microsoft’s Bot Framework) to develop 

conversational dashboards that enable users to easily 

access information using natural language. 

Additionally, our work offers practical implications for 

governments, health organizations, and other 

institutions that provide crisis response dashboards 

with the aim of informing the general public. As our 

findings suggest that traditional dashboard designs 

could fail to accommodate the average user, we 

recommend practitioners to explore alternative ways of 

providing access to the information in a crisis response 

dashboard, for example, using natural language. While 

our evaluation shows that natural language interaction 

could possibly replace traditional ways of interacting 

with a dashboard (e.g., using a mouse), several users 

reported that they would still prefer to have the option 

to revert to using their mouse or touchscreen if, for 

example, they are in a public space. Therefore, 

practitioners could first implement natural language 

interaction to complement rather than replace existing 

ways of interacting with their dashboard and, 

importantly, combine it with conversational 

onboarding to familiarize users with how and when 

best to use natural language. Following these 

guidelines, practitioners could make their crisis 

response dashboards more accessible to broader 

audiences and ultimately disseminate important 

information more effectively during a crisis. 

5.3 Limitations and Future Research 

Our work is subject to some limitations. First, although 

we provide design knowledge for a class of artifacts 

(i.e., crisis response dashboards), the instantiation and 

evaluation of DPs focus on one particular instance of 

this class, namely a COVID-19 dashboard. Since 

dashboards for other crises, such as natural disasters, 

might produce different kinds of data and require 

different data visualizations, one limitation of this DSR 

project is its focus on the COVID-19 pandemic. 

However, since many crisis response dashboards build 

on the same underlying technology and provide similar 

user interfaces, our design theory should be 

generalizable to dashboard implementations for other 

crises. More specifically, the central idea of our 

nascent design theory—enabling users to interact with 

a dashboard using natural language—is independent of 

the underlying data and types of visualizations in a 

dashboard. However, future research is needed to test 

our design theory in the context of other crises. 

Second, our DSR project focuses on transparent 

interaction as one key dimension of effective use. 

However, the conceptualization of effective use in 

TEU comprises two additional dimensions—

representational fidelity and informed action—that 

were not included in our research. Although kernel 

theories are rarely used as-is in DSR “due to a 

mismatch in terms of scope and granularity between 

the theoretical frameworks and the design problem” 

(Arazy et al., 2010, p. 457), investigating the other two 

dimensions of effective use in the context of crisis 

response dashboards would be a fruitful future 

research direction. Further, future work could explore 

other parts of TEU by, for example, providing design 

knowledge for physical structures (e.g., microphones, 

screens). Finally, there are other important challenges 

for the design of these dashboards, such as their 

faithful representation of real-world states (Recker, 

2021) and data quality (Torres & Sidorova, 2019), 

which also warrant further research. 

Third, we used MTurk to recruit participants for our 

final evaluation. Although studies show that the 

demographics of MTurk workers are similar to that of 

the general U.S. population and more diverse than 

many other samples (Buhrmester et al., 2011), the 

MTurk sample might limit the generalizability of our 

findings. To address this limitation, we used the 

parameters MTurk provides to recruit participants with 
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a wide range of socio-demographic backgrounds and 

experience levels (Steelman et al., 2014). However, 

future research should validate our findings with a 

nationally representative sample. 

Fourth, our final evaluation was conducted in a laptop 

or desktop environment. Therefore, the traditional 

crisis response dashboard, which we compared to our 

conversational dashboard, only supported 

conventional mouse interaction. However, mobile 

devices, such as smartphones and tablets, might also 

offer users additional ways of interacting with a 

traditional dashboard using touch (e.g., swiping, 

pinching). Although touch and mouse interaction 

exhibit similar characteristics and limitations in the 

context of dashboards (Srinivasan & Stasko, 2018), 

future research should investigate how touch 

interaction affects users’ level of transparent 

interaction. 

Finally, we used behavioral data to measure users’ 

transparent interaction, as well as their effectiveness 

and efficiency in finding information. Although we 

followed Burton-Jones and Grange’s (2013) 

suggestions to compare users’ actual navigation steps 

against the “quickest navigation path” using log data, 

there could be other ways of calculating transparent 

interaction based on this data. Therefore, more 

research is needed to examine and compare our 

approach against other measurement approaches based 

on self-reported data. 

6 Conclusion 

Dashboards are important data science artifacts 

designed to inform the general public during a crisis. 

During the COVID-19 pandemic, they attracted more 

public attention than ever before. Although IS and HCI 

research have dealt with the design and use of 

dashboards for decades, most research has focused on 

dashboards for decision makers in organizations, 

suggesting that previous findings might not generalize 

well to the class of crisis response dashboards that need 

to be designed for broader audiences. With our 

research, we show how IS theories and methods can be 

used to improve real-world data science artifacts and, 

more broadly, demonstrate that the IS community in 

general and DSR scholars in particular, can help the 

world to be better prepared for future crises. 
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Appendix: Additional Material for User Evaluation (Online Experiment) 

Table A1. Demographic Information of Participants 

  N % 

Gender 
Female 121 44.6% 

Male 150 55.4% 

Age 

18 – 24 years 19 7% 

25 – 34 years 93 34.3% 

35 – 44 years 87 32.1% 

45 – 54 years 41 15.1% 

55+ years 31 11.5% 

Education 

High School 50 18.5% 

Technical, trade, or business after high school 45 16.6% 

Bachelor’s degree 136 50.2% 

Master’s degree 31 11.4% 

Doctoral degree or professional degree (JD,MD) 9 3.3% 

Experience with Dashboards 

Never 31 11.4% 

1-2 times a year 46 17% 

1-2 times a month 73 26.9% 

1-2 times a week 69 25.5% 

daily 52 19.2% 

Experience with Conversational 

User Interfaces 

Never 25 9.2% 

1-2 times a year 20 7.4% 

1-2 times a month 42 15.5% 

1-2 times a week 82 30.3% 

daily 102 37.6% 

Computer Self-Efficacy M = 6.01 (SD = 1.03) 

Table A2. Experimental Tasks 

1. Which of the following states had the fewest counties with more than 40,000 confirmed cases on September 29th? (Texas, 

California, Florida) 

2. Which of the following states had the largest increase in total cases between May 15th and August 31st? (Idaho, Kentucky) 

3. Which of the following region had more cases as of October 25th? (West, Midwest) 

4. How many people had died in Wisconsin, Nebraska, Idaho, and Connecticut combined until May 3rd, 2020? 

Table A3. Calculation of Transparent Interaction based on Users’ Navigation Path: Examples 

Navig. 

Steps 

Quickest Path Task 2  

(Mouse) 

Actual Navigation Path Taken 

(P5004790 – TDB Condition) 

Level of Transparent 

Interaction 

1 Filter for Idaho Drill-down for Idaho 

TI = 5/6 = 0.83 

2 Filter for 2020-05-15 Filter for 2020-05-15 

3 Filter for Kentucky Filter for 2020-08-31 

4 Filter for 2020-08-31 Zoom Out 

5 Filter for Idaho Drill-down for Kentucky 

6  Filter for 2020-05-15 

 

Navig. 

Steps 

Quickest Path Task 2  

(Natural Language) 

Actual Navigation Path Taken 

(P.9109728 CDB-NLO Condition) 

Level of Transparent 

Interaction 

1 Filter for Idaho and 2020-05-15 Filter for Idaho 

TI = 4/6 = 0.67 

2 Filter for Kentucky Filter for Kentucky 

3 Filter for 2020-08-31 Filter for 2020-05-15 

4 Filter for Idaho Filter for Idaho 

5  Filter for 2020-08-31 

6  Filter for Kentucky 
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